scholarly journals Graph-Based Community Detection for Decoy Selection in Template-Free Protein Structure Prediction

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 854 ◽  
Author(s):  
Kazi Kabir ◽  
Liban Hassan ◽  
Zahra Rajabi ◽  
Nasrin Akhter ◽  
Amarda Shehu

Significant efforts in wet and dry laboratories are devoted to resolving molecular structures. In particular, computational methods can now compute thousands of tertiary structures that populate the structure space of a protein molecule of interest. These advances are now allowing us to turn our attention to analysis methodologies that are able to organize the computed structures in order to highlight functionally relevant structural states. In this paper, we propose a methodology that leverages community detection methods, designed originally to detect communities in social networks, to organize computationally probed protein structure spaces. We report a principled comparison of such methods along several metrics on proteins of diverse folds and lengths. We present a rigorous evaluation in the context of decoy selection in template-free protein structure prediction. The results make the case that network-based community detection methods warrant further investigation to advance analysis of protein structure spaces for automated selection of functionally relevant structures.

10.29007/j5p9 ◽  
2019 ◽  
Author(s):  
Ahmed Bin Zaman ◽  
Amarda Shehu

A central challenge in template-free protein structure prediction is controlling the quality of computed tertiary structures also known as decoys. Given the size, dimensionality, and inherent characteristics of the protein structure space, this is non-trivial. The current mechanism employed by decoy generation algorithms relies on generating as many decoys as can be afforded. This is impractical and uninformed by any metrics of interest on a decoy dataset. In this paper, we propose to equip a decoy generation algorithm with an evolving map of the protein structure space. The map utilizes low-dimensional representations of protein structure and serves as a memory whose granularity can be controlled. Evaluations on diverse target sequences show that drastic reductions in storage do not sacrifice decoy quality, indicating the promise of the proposed mechanism for decoy generation algorithms in template-free protein structure prediction.


2019 ◽  
Vol 17 (06) ◽  
pp. 1940013
Author(s):  
Ahmed Bin Zaman ◽  
Amarda Shehu

An important goal in template-free protein structure prediction is how to control the quality of computed tertiary structures of a target amino-acid sequence. Despite great advances in algorithmic research, given the size, dimensionality, and inherent characteristics of the protein structure space, this task remains exceptionally challenging. It is current practice to aim to generate as many structures as can be afforded so as to increase the likelihood that some of them will reside near the sought but unknown biologically-active/native structure. When operating within a given computational budget, this is impractical and uninformed by any metrics of interest. In this paper, we propose instead to equip algorithms that generate tertiary structures, also known as decoy generation algorithms, with memory of the protein structure space that they explore. Specifically, we propose an evolving, granularity-controllable map of the protein structure space that makes use of low-dimensional representations of protein structures. Evaluations on diverse target sequences that include recent hard CASP targets show that drastic reductions in storage can be made without sacrificing decoy quality. The presented results make the case that integrating a map of the protein structure space is a promising mechanism to enhance decoy generation algorithms in template-free protein structure prediction.


Biochimie ◽  
2020 ◽  
Vol 175 ◽  
pp. 85-92 ◽  
Author(s):  
Surbhi Dhingra ◽  
Ramanathan Sowdhamini ◽  
Frédéric Cadet ◽  
Bernard Offmann

2021 ◽  
Author(s):  
Yong-Chang Xu ◽  
Tian-Jun ShangGuan ◽  
Xue-Ming Ding ◽  
Ngaam J. Cheung

The amino acid sequence of a protein contains all the necessary information to specify its shape, which dictates its biological activities. However, it is challenging and expensive to experimentally determine the three-dimensional structure of proteins. The backbone torsion angles, as an important structural constraint, play a critical role in protein structure prediction, and accurately predicting the angles can considerably advance the tertiary structure prediction by accelerating efficient sampling of the large conformational space for low energy structures. On account of the rapid growth of protein databases and striking breakthroughs in deep learning algorithms, computational advances allow us to extract knowledge from large-scale data to address key biological questions. Here we propose evolutionary signatures that are computed from protein sequence profiles, and a deep neural network, termed ESIDEN, that adopts a straightforward architecture of recurrent neural networks with a small number of learnable parameters. The proposed ESIDEN is validated on three benchmark datasets, including D2020, TEST2016/2018, and CASPs datasets. On the D2020, using the combination of the four novel features and basic features, the ESIDEN achieves the mean absolute error (MAE) of 15.8 and 20.1 for ϕ and ψ, respectively. Comparing to the best-so-far methods, we show that the ESIDEN significantly improves the angle ψ by the MAE decrements of more than 2 degrees on both TEST2016 and TEST2018 and achieves closely approximate MAE of the angle ϕ although it adopts simple architecture and fewer learnable parameters. On fifty-nine template-free modeling targets, the ESIDEN achieves high accuracy by reducing the MAEs by about 0.4 and more than 2.5 degrees on average for the torsion angles ϕ and ψ in the CASPs, respectively. Using the predicted torsion angles, we infer the tertiary structures of four representative template-free modeling targets that achieve high precision with regard to the root-mean-square deviation and TM-score by comparing them to the native structures. The results demonstrate that the ESIDEN can make accurate predictions of the torsion angles by leveraging the evolutionary signatures compared to widely used classical features. The proposed evolutionary signatures would be also used as alternative features in predicting residue-residue distance, protein structure, and protein-ligand binding sites. Moreover, the high-precision torsion angles predicted by the ESIDEN can be used to accurately infer protein tertiary structures, and the ESIDEN would potentially pave the way to improve protein structure prediction.


Sign in / Sign up

Export Citation Format

Share Document