scholarly journals Bimetallic Core–Shell Nanoparticles of Gold and Silver via Bioinspired Polydopamine Layer as Surface-Enhanced Raman Spectroscopy (SERS) Platform

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 688 ◽  
Author(s):  
Asli Yilmaz ◽  
Mehmet Yilmaz

Despite numerous attempts to fabricate the core–shell nanoparticles, novel, simple, and low-cost approaches are still required to produce these efficient nanosystems. In this study, we propose the synthesis of bimetallic core–shell nanoparticles of gold (AuNP) and silver (AgNP) nanostructures via a bioinspired polydopamine (PDOP) layer and their employment as a surface-enhanced Raman spectroscopy (SERS) platform. Herein, the PDOP layer was used as an interface between nanostructures as well as stabilizing and reducing agents for the deposition of silver ions onto the AuNPs. UV-vis absorption spectra and electron microscope images confirmed the deposition of the silver ions and the formation of core–shell nanoparticles. SERS activity tests indicated that both the PDOP thickness and silver deposition time are the dominant parameters that determine the SERS performances of the proposed core–shell system. In comparison to bare AuNPs, more than three times higher SERS signal intensity was obtained with an enhancement factor of 3.5 × 105.

2010 ◽  
Vol 152-153 ◽  
pp. 67-72 ◽  
Author(s):  
Chun Rong Wang ◽  
Zhu Fa Zhou ◽  
Yan Jie Li ◽  
Ran Ran Tian ◽  
Xiao Chun Dai

Spherical α-Fe2O3/Ag core/shell nanoparticles were prepared by reducing Ag(NH3)2+ with formaldehyde using the seeding method. 3- Aminopropyltriethoxysilane (APS) acts as a “bridge” to link between α-Fe2O3 core and Ag shell. The obtained nanoparticles were characterized by XRD, TEM, SEM, EDS, and Roman. The results show thatα-Fe2O3 cores are coated by Ag shell completely. The average size of α-Fe2O3/Ag nanoparticles is 95 nm and the thicknesses of Ag shell are 15nm in 3.7% HCHO and 1.0M AgNO3. The thickness of Ag shell can be tunable by changing reaction conditions, such as the concentration of AgNO3, reduction reaction rate. The surface-enhanced Raman scattering (SERS) effect of the core/shell particles are measured with Pyridine (Py) as molecule probe. SERS indicate that the Raman signals of Py adsorbed on α-Fe2O3/Ag nanoparticles exhibit large enhancement at 1010 and 1038 cm-1 respectively. And the intensity of signals is enhanced with the increase of the thickness of Ag shell. The uniform and rough surface of α-Fe2O3/Ag particles exhibits strong SERS activity in 3.7% HCHO and 1.0M AgNO3. The spherical α-Fe2O3/Ag core/shell nanoparticles exhibit SERS activity.


Sign in / Sign up

Export Citation Format

Share Document