scholarly journals Electrode–Electrolyte Interactions in an Aqueous Aluminum–Carbon Rechargeable Battery System

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3235
Author(s):  
Jasmin Smajic ◽  
Amira Alazmi ◽  
Nimer Wehbe ◽  
Pedro M. F. J. Costa

Being environmentally friendly, safe and easy to handle, aqueous electrolytes are of particular interest for next-generation electrochemical energy storage devices. When coupled with an abundant, recyclable and low-cost electrode material such as aluminum, the promise of a green and economically sustainable battery system has extraordinary appeal. In this work, we study the interaction of an aqueous electrolyte with an aluminum plate anode and various graphitic cathodes. Upon establishing the boundary conditions for optimal electrolyte performance, we find that a mesoporous reduced graphene oxide powder constitutes a better cathode material option than graphite flakes.

RSC Advances ◽  
2018 ◽  
Vol 8 (16) ◽  
pp. 8607-8614 ◽  
Author(s):  
Lingxia Zheng ◽  
Lingtong Guan ◽  
Guang Yang ◽  
Sanming Chen ◽  
Huajun Zheng

CoFe2O4/reduced graphene oxide (CoFe2O4/rGO) hydrogel was synthesized in situ via a facile one-pot solvothermal approach.


2021 ◽  
Author(s):  
Jasmin Smajic ◽  
Amira Alazmi ◽  
Nimer Wehbe ◽  
Pedro M. F. J. Costa

Concerns over lithium-ion battery safety and environmental impact have led to increased exploration of alternative energy storage systems. Of these, aluminum is of particular interest, being environmentally friendly, safe and easy to handle. In this work, we explore graphitic cathodes with an aqueous electrolyte (aluminum trifluoromethanesulfonate) and study their electrochemical performance. Finally, a reduced graphene cathode with tailored porosity results in an eco-friendly and inherently safe rechargeable battery with promising electrochemical performance


2021 ◽  
Author(s):  
Jasmin Smajic ◽  
Amira Alazmi ◽  
Nimer Wehbe ◽  
Pedro M. F. J. Costa

Concerns over lithium-ion battery safety and environmental impact have led to increased exploration of alternative energy storage systems. Of these, aluminum is of particular interest, being environmentally friendly, safe and easy to handle. In this work, we explore graphitic cathodes with an aqueous electrolyte (aluminum trifluoromethanesulfonate) and study their electrochemical performance. Finally, a reduced graphene cathode with tailored porosity results in an eco-friendly and inherently safe rechargeable battery with promising electrochemical performance


2014 ◽  
Vol 07 (01) ◽  
pp. 1430001 ◽  
Author(s):  
Kunfeng Chen ◽  
Dongfeng Xue

Cu -based materials, including metal Cu and semiconductors of Cu 2 O and CuO , are promising and important candidates toward practical electrochemical energy storage devices due to their abundant, low cost, easy synthesis and environmentally friendly merits. This review presents an overview of the applications of Cu -based materials in the state-of-art electrochemical energy storage, including both lithium-ion batteries and supercapacitors. The synthesis chemistry, structures and the corresponding electrochemical performances of these materials are summarized and compared. During chemical synthesis and electroactive performance measurement of Cu -based materials, we found that Cu – Cu 2 O – CuO sequence governs all related transformations. Novel water-soluble CuCl 2 supercapacitors with ultrahigh capacitance were also reviewed which can advance the understanding of intrinsic mechanism of inorganic pseudocapacitors. The major goal of this review is to highlight some recent progresses in using Cu -based materials for electrochemical energy storage.


Sign in / Sign up

Export Citation Format

Share Document