scholarly journals Effective Double Electron Transport Layer Inducing Crystallization of Active Layer for Improving the Performance of Organic Solar Cells

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Ping Li ◽  
Lijia Chen ◽  
Xiaoyan Hu ◽  
Lirong He ◽  
Zezhuan Jiang ◽  
...  

Interface modification plays an important role in enhancing the photoelectric conversion efficiency and stability of organic solar cells. In this work, alkali metal lithium chloride (LiCl) was introduced between indium tin oxide and polyethyleneimine ethoxylate (PEIE) to prepare a double-layer electron transport layer. Results show that the introduction of LiCl has dual functions. The first function is that LiCl can enhance conductivity, thereby facilitating charge collection. The second function is that the double-layer electron transport layer based on LiCl can induce the crystallization of active layer, thereby enhancing charge transport. Devices with LiCl/PEIE double layer achieve a high power conversion efficiency (PCE) of 3.84%, which is 21.5% higher than that of pristine devices (the PCE of pristine devices with pure PEIE interface layer is 3.16%).

2016 ◽  
Vol 4 (10) ◽  
pp. 3784-3791 ◽  
Author(s):  
Won-Yong Jin ◽  
Riski Titian Ginting ◽  
Sung-Ho Jin ◽  
Jae-Wook Kang

Highly efficient and air-stable inverted organic solar cells were fabricated from solution-processed non-conjugated polyethylenimine ethoxylated as the polyelectrolyte, a zinc oxide bilayer as the electron transport layer, and an active layer of PTB7 and PC71BM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


2020 ◽  
Vol 64 (4) ◽  
pp. 808-819
Author(s):  
Shenya Qu ◽  
Jiangsheng Yu ◽  
Jinru Cao ◽  
Xin Liu ◽  
Hongtao Wang ◽  
...  

Solar Energy ◽  
2022 ◽  
Vol 231 ◽  
pp. 458-463
Author(s):  
Sanjay Kumar Swami ◽  
Neha Chaturvedi ◽  
Anuj Kumar ◽  
Vinod Kumar ◽  
Ashish Garg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document