scholarly journals Effect of Graphene Oxide Synthesis Method on Properties and Performance of Polysulfone-Graphene Oxide Mixed Matrix Membranes

Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 769 ◽  
Author(s):  
Safae Sali ◽  
Hamish R. Mackey ◽  
Ahmed A. Abdala

Graphene oxide (GO) has shown great promise as a nanofiller to enhance the performance of mixed matrix composite membranes (MMMs) for water treatment applications. However, GO can be prepared by various synthesis routes, leading to different concentrations of the attached oxygen functional groups. In this research, GO produced by the Hummers’, Tour, and Staudenmaier methods were characterized and embedded at various fractions into the matrix of polysulfone (PSf) and used to prepare microfiltration membranes via the phase inversion process. The effects of the GO preparation method and loading on the membrane characteristics, as well as performance for oil removal from an oil-water emulsion, are analyzed. Our results reveal that GO prepared by the Staudenmaier method has a higher concentration of the more polar carbonyl group, increasing the membrane hydrophilicity and porosity compared to GO prepared by the Hummers’ and Tour methods. On the other hand, the Hummers’ and Tour methods produce GO with larger sheet size, and are more effective in enhancing the mechanical properties of the PSf membrane. Finally, all MMMs exhibited improved water flux (up to 2.7 times) and oil rejection, than those for the control PSf sample, with the optimum GO loading ranged between 0.1–0.2 wt%.

RSC Advances ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 2211-2217 ◽  
Author(s):  
Bo Feng ◽  
Kai Xu ◽  
Aisheng Huang

Graphene oxide (GO) was incorporated into polyimide (PI) to fabricate GO/PI mixed matrix membranes (MMMs), which show a high water flux (36.1 kg m−2 h−1) and a high salt rejection (99.9%) for desalination of 3.5 wt% seawater at 90 °C.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 510
Author(s):  
Muhammad Zahid ◽  
Saba Akram ◽  
Anum Rashid ◽  
Zulfiqar Ahmad Rehan ◽  
Talha Javed ◽  
...  

A novel, functionalized graphene oxide–based cellulose acetate membrane was fabricated using the phase inversion method to improve the membrane characteristics and performance. We studied the effect of aminated graphene oxide (NH2–GO) composite on the CA membrane characteristics and performance in terms of membrane chemistry, hydrophilicity, thermal and mechanical stability, permeation flux, and antibacterial activity. The results of contact angle and water flux indicate the improved hydrophilic behavior of composite membranes in comparison to that of the pure CA membrane. The AGO-3 membrane showed the highest water flux of about 153 Lm−2h−1. The addition of hydrophilic AGO additive in CA membranes enhanced the antibacterial activity of AGO–CA membranes, and the thermal stability of the resulting membrane also improved since it increases the Tg value in comparison to that of a pristine CA membrane. The aminated graphene oxide (NH2–GO) was, therefore, found to be a promising additive for the fabrication of composite membranes with potent applications in wastewater treatment.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Haleema Tariq Bhatti ◽  
Nasir M. Ahmad ◽  
Muhammad Bilal Khan Niazi ◽  
Muhammad Azeem Ur Rehman Alvi ◽  
Naveed Ahmad ◽  
...  

The present work is focused on preparation, characterization, and antibacterial activity evaluation of graphene oxide/polyethersulfone mixed matrix filtration membranes. Graphene oxide (GO) was synthesized via improved Hummer’s method and characterized by XRD, FTIR, and SEM. FT-IR spectra showed the presence of carboxylic acid and hydroxyl groups on GO nanosheets. Different concentrations of the synthesized GO at 0.25, 0.5, and 1.0 wt. % were incorporated in polyethersulfone (PES) matrix via phase inversion method to fabricate GO-PES membranes. Increasing porosity and formation of wider, finger-like channels were observed with increased GO concentrations relative to pristine membranes as evident from scanning electron microscopy (SEM) micrographs of the fabricated membranes. However, membranes prepared with 1 wt. % GO appear to contain aggregation and narrowing of pore morphology. GO-incorporated membranes demonstrated enhanced flux, water-retaining capacities, and wettability as compared to pristine PES membranes. Shake flask and colony counting methods were employed to carry out antibacterial testing of synthesized GO and fabricated GO-PES membranes against Salmonella typhi (S. typhi)—a gram-negative bacteria present in water that is known as causative agent of typhoid. Synthesized GO showed significant reduction up to 70.8% in S. typhi cell count. In the case of fabricated membranes, variable concentrations of GO are observed to significantly influence the percentage viability of S. typhi, with reduction percentages observed at 41, 60, and 69% for 0.25, 0.5, and 1.0 wt. % GO-incorporated membranes relative to 17% in the case of pristine PES membranes. The results indicate a good potential for applying GO/PES composite membranes for water filtration application.


2019 ◽  
Vol 589 ◽  
pp. 117246 ◽  
Author(s):  
Yonghong Wang ◽  
Long Li ◽  
Xinru Zhang ◽  
Jinping Li ◽  
Chengcen Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document