scholarly journals Plasma Kinetics of Choline and Choline Metabolites After A Single Dose of SuperbaBoostTM Krill Oil or Choline Bitartrate in Healthy Volunteers

Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2548 ◽  
Author(s):  
Yvonne Mödinger ◽  
Christiane Schön ◽  
Manfred Wilhelm ◽  
Petter-Arnt Hals

As an essential nutrient, the organic water-soluble compound choline is important for human health. Choline is required for numerous biological processes, including the synthesis of neurotransmitters, and it is an important prerequisite for structural integrity and the functioning of cells. A choline-rich diet provides crucial choline sources, yet additional choline dietary supplements might be needed to fully meet the body’s requirements. Dependent on the structure of choline in different sources, absorption and metabolism may differ and strongly impact the bioavailability of circulating choline. This study in healthy volunteers aimed to compare the pharmacokinetics of free choline and of selected choline metabolites between the single dose intake of phosphatidylcholine, present in SuperbaBoostTM krill oil, and choline bitartrate salt. Results demonstrate that albeit free choline levels in plasma were comparable between both choline sources, peak choline concentration was reached significantly later upon intake of SuperbaBoostTM. Moreover, the occurrence of choline metabolites differed between the study products. Levels of the biologically important metabolites betaine and dimethylglycine (DMG) were higher, while levels of trimethylamine N-oxide (TMAO) were substantially lower upon intake of SuperbaBoostTM compared to choline bitartrate.

1988 ◽  
Vol 34 (1) ◽  
pp. 101-104 ◽  
Author(s):  
S. -M. Huang ◽  
T. B. Marriott ◽  
H. S. Weintraub ◽  
J. D. Arnold ◽  
J. Boccagno ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huban Thomas Rajarethnem ◽  
Kumar Megur Ramakrishna Bhat ◽  
Malsawmzuali Jc ◽  
Siva Kumar Gopalkrishnan ◽  
Ramesh Babu Mugundhu Gopalram ◽  
...  

Choline is an essential nutrient for humans which plays an important role in structural integrity and signaling functions. Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid, highly enriched in cell membranes of the brain. Dietary intake of choline or DHA alone by pregnant mothers directly affects fetal brain development and function. But no studies show the efficacy of combined supplementation of choline and DHA on fetal neurodevelopment. The aim of the present study was to analyze fetal neurodevelopment on combined supplementation of pregnant dams with choline and DHA. Pregnant dams were divided into five groups: normal control [NC], saline control [SC], choline [C], DHA, and C + DHA. Saline, choline, and DHA were given as supplements to appropriate groups of dams. NC dams were undisturbed during entire gestation. On postnatal day (PND) 40, brains were processed for Cresyl staining. Pups from choline or DHA supplemented group showed significant (p<0.05) increase in number of neurons in hippocampus when compared to the same in NC and SC groups. Moreover, pups from C + DHA supplemented group showed significantly higher number of neurons (p<0.001) in hippocampus when compared to the same in NC and SC groups. Thus combined supplementation of choline and DHA during normal pregnancy enhances fetal hippocampal neurodevelopment better than supplementation of choline or DHA alone.


1948 ◽  
Vol 60 (6) ◽  
pp. 958-963
Author(s):  
Leo Loewe ◽  
Theodore Rosenthal ◽  
William Leifer ◽  
Perry Katzen ◽  
Harold B. Eiber ◽  
...  

1999 ◽  
Vol 54 (11) ◽  
pp. 821-827 ◽  
Author(s):  
S. D. Ferrara ◽  
R. Giorgetti ◽  
S. Zancaner ◽  
R. Orlando ◽  
A. Tagliabracci ◽  
...  

2012 ◽  
Vol 12 (21) ◽  
pp. 10239-10255 ◽  
Author(s):  
L. T. Padró ◽  
R. H. Moore ◽  
X. Zhang ◽  
N. Rastogi ◽  
R. J. Weber ◽  
...  

Abstract. Aerosol composition and mixing state near anthropogenic sources can be highly variable and can challenge predictions of cloud condensation nuclei (CCN). The impacts of chemical composition on CCN activation kinetics is also an important, but largely unknown, aspect of cloud droplet formation. Towards this, we present in-situ size-resolved CCN measurements carried out during the 2008 summertime August Mini Intensive Gas and Aerosol Study (AMIGAS) campaign in Atlanta, GA. Aerosol chemical composition was measured by two particle-into-liquid samplers measuring water-soluble inorganic ions and total water-soluble organic carbon. Size-resolved CCN data were collected using the Scanning Mobility CCN Analysis (SMCA) method and were used to obtain characteristic aerosol hygroscopicity distributions, whose breadth reflects the aerosol compositional variability and mixing state. Knowledge of aerosol mixing state is important for accurate predictions of CCN concentrations and that the influence of an externally-mixed, CCN-active aerosol fraction varies with size from 31% for particle diameters less than 40 nm to 93% for accumulation mode aerosol during the day. Assuming size-dependent aerosol mixing state and size-invariant chemical composition decreases the average CCN concentration overprediction (for all but one mixing state and chemical composition scenario considered) from over 190–240% to less than 20%. CCN activity is parameterized using a single hygroscopicity parameter, κ, which averages to 0.16 ± 0.07 for 80 nm particles and exhibits considerable variability (from 0.03 to 0.48) throughout the study period. Particles in the 60–100 nm range exhibited similar hygroscopicity, with a κ range for 60 nm between 0.06–0.076 (mean of 0.18 ± 0.09). Smaller particles (40 nm) had on average greater κ, with a range of 0.20–0.92 (mean of 0.3 ± 0.12). Analysis of the droplet activation kinetics of the aerosol sampled suggests that most of the CCN activate as rapidly as calibration aerosol, suggesting that aerosol composition exhibits a minor (if any) impact on CCN activation kinetics.


1986 ◽  
Vol 13 (2) ◽  
pp. 77-83 ◽  
Author(s):  
Agneta Ohlsson ◽  
Jan-Erik Lindgren ◽  
Susanne Andersson ◽  
Stig Agurell ◽  
Hampton Gillespie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document