scholarly journals Next-Generation Genome Sequencing of Sedum plumbizincicola Sheds Light on the Structural Evolution of Plastid rRNA Operon and Phylogenetic Implications within Saxifragales

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 386
Author(s):  
Hengwu Ding ◽  
Ran Zhu ◽  
Jinxiu Dong ◽  
De Bi ◽  
Lan Jiang ◽  
...  

The genus Sedum, with about 470 recognized species, is classified in the family Crassulaceae of the order Saxifragales. Phylogenetic relationships within the Saxifragales are still unresolved and controversial. In this study, the plastome of S. plumbizincicola was firstly presented, with a focus on the structural analysis of rrn operon and phylogenetic implications within the order Saxifragaceae. The assembled complete plastome of S. plumbizincicola is 149,397 bp in size, with a typical circular, double-stranded, and quadripartite structure of angiosperms. It contains 133 genes, including 85 protein-coding genes (PCGs), 36 tRNA genes, 8 rRNA genes, and four pseudogenes (one ycf1, one rps19, and two ycf15). The predicted secondary structure of S. plumbizincicola 16S rRNA includes three main domains organized in 74 helices. Further, our results confirm that 4.5S rRNA of higher plants is associated with fragmentation of 23S rRNA progenitor. Notably, we also found the sequence of putative rrn5 promoter has some evolutionary implications within the order Saxifragales. Moreover, our phylogenetic analyses suggested that S. plumbizincicola had a closer relationship with S. sarmentosum than S. oryzifolium, and supported the taxonomic revision of Phedimus. Our findings of the present study will be useful for further investigation of the evolution of plastid rRNA operon and phylogenetic relationships within Saxifragales.

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 597
Author(s):  
Rongrong Li ◽  
Min Li ◽  
Jiang Yan ◽  
Ming Bai ◽  
Hufang Zhang

Four complete mitogenomes of Eysarcoris rosaceus, E. montivagus, E. gibbosus, E. annamita and one near-complete mitochondrial genome of E. ventralis were sequenced and used to explore the phylogenetic relationships of tribes within the subfamily Pentatominae. The mitogenomes range from 15,422 to 16,043 base pairs (bp) in length and encode 37 genes, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes (21 in E. ventralis), and a control region. Similar to other heteropteran species, the AT contents of the sequenced species were higher than their GC contents. The most frequently used start/stop codon was ATN/TAA. GTG was only found in atp6 and atp8 of E. gibbosus. All transfer RNA genes (tRNAs) exhibit the typical cloverleaf secondary structure, except for the trnS1 and trnV, which lacks the stem of the DHU arm. The length and copy number of repeat units were conserved within Eysarcoris, with the exception of E. gibbosus. Phylogenetic analyses based on mitogenomes using both maximum likelihood (ML) and Bayesian inference (BI) methods strongly supported the relationship among tribes within Pentatominae and confirmed that Graphosoma should be an intermediate lineage of Pentatominae. The relationship between Eysarcoris and Carbula was strongly supported and combined with our previous geometric morphometrics and chromosomal studies, suggest the Eysarcoris should belong to the tribe Eyasrcorini. This work will help to enhance our understanding of mitochondrial genomic evolution and phylogenetic relationships in Pentatominae.


2020 ◽  
Author(s):  
Gurusamy Raman ◽  
KyuTae Park ◽  
Joo Hwan Kim ◽  
SeonJoo Park

Abstract Background: The invasive species Xanthium spinosum has been used as a traditional Chinese medicine for many years. Unfortunately, no extensive molecular studies of this plant have been conducted. Results: Here, the complete chloroplast (cp) genome sequence of X. spinosum was assembled and analyzed. The cp genome of X. spinosum was 152,422 base pairs (bp) in length, with a quadripartite circular structure. The cp genome contained 115 unique genes, including 80 PCGs, 31 tRNA genes, and 4 rRNA genes. Comparative analyses revealed that X. spinosum contains a large number of repeats (999 repeats) and 701 SSRs in its cp genome. Fourteen divergences (Π > 0.03) were found in the intergenic spacer regions. Phylogenetic analyses revealed that Parthenium is a sister clade to both Xanthium and Ambrosia and an early-diverging lineage of subtribe Ambrosiinae, although this finding was supported with a very weak bootstrap value. Conclusion: The identified hotspot regions could be used as molecular markers for resolving phylogenetic relationships and species identification in the genus Xanthium.


2014 ◽  
Vol 35 (3) ◽  
pp. 331-343 ◽  
Author(s):  
Yongmin Li ◽  
Huabin Zhang ◽  
Xiaoyou Wu ◽  
Hui Xue ◽  
Peng Yan ◽  
...  

We determined the complete nucleotide sequence of the mitochondrial genome of Odorrana schmackeri (family Ranidae). The O. schmackeri mitogenome (18 302 bp) contained 13 protein-coding genes, 2 rRNA genes, 21 tRNA genes and a single control region (CR). In the new mitogenome, the distinctive feature is the loss of tRNA-His, which could be explained by a hypothesis of gene substitution. The new sequence data was used to assess the phylogenetic relationships among 23 ranid species mostly from China using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic analyses support two families (Ranidae, Dicroglossidae) for Chinese ranids. In Ranidae, we support the genus Amolops should be retained in the subfamily Raninae rather than in a distinct subfamily Amolopinae of its own. Meanwhile, the monophyly of the genus Odorrana was supported. Within Dicroglossidae, four tribes were well supported including Occidozygini, Dicroglossini, Limnonectini and Paini. More mitochondrial genomes and nuclear genes are required to decisively evaluate phylogenetic relationships of ranids.


2020 ◽  
Author(s):  
Gurusamy Raman ◽  
KyuTae Park ◽  
Joo Hwan Kim ◽  
SeonJoo Park

Abstract Background: The invasive species Xanthium spinosum has been used as a traditional Chinese medicine for many years. Unfortunately, no extensive molecular studies of this plant have been conducted. Results: Here, the complete chloroplast (cp) genome sequence of X. spinosum was assembled and analyzed. The cp genome of X. spinosum was 152,422 base pairs (bp) in length, with a quadripartite circular structure. The cp genome contained 115 unique genes, including 80 PCGs, 31 tRNA genes, and 4 rRNA genes. Comparative analyses revealed that X. spinosum contains a large number of repeats (999 repeats) and 701 SSRs in its cp genome. Fourteen divergences (Π > 0.03) were found in the intergenic spacer regions. Phylogenetic analyses revealed that Parthenium is a sister clade to both Xanthium and Ambrosia and an early-diverging lineage of subtribe Ambrosiinae, although this finding was supported with a very weak bootstrap value. Conclusion: The identified hotspot regions could be used as molecular markers for resolving phylogenetic relationships and species identification in the genus Xanthium.


2020 ◽  
Author(s):  
Gurusamy Raman ◽  
KyuTae Park ◽  
Joo Hwan Kim ◽  
SeonJoo Park

Abstract Background: The invasive species Xanthium spinosum has been used as a traditional Chinese medicine for many years. Unfortunately, no extensive molecular studies of this plant have been conducted. Results: Here, the complete chloroplast (cp) genome sequence of X. spinosum was assembled and analyzed. The cp genome of X. spinosum was 152,422 base pairs (bp) in length, with a quadripartite circular structure. The cp genome contained 115 unique genes, including 80 PCGs, 31 tRNA genes, and 4 rRNA genes. Comparative analyses revealed that X. spinosum contains a large number of repeats (999 repeats) and 701 SSRs in its cp genome. Fourteen divergences (Π > 0.03) were found in the intergenic spacer regions. Phylogenetic analyses revealed that Parthenium is a sister clade to both Xanthium and Ambrosia and an early-diverging lineage of subtribe Ambrosiinae, although this finding was supported with a very weak bootstrap value. Conclusion: The identified hotspot regions could be used as molecular markers for resolving phylogenetic relationships and species identification in the genus Xanthium.


2021 ◽  
Author(s):  
Jiequn Yi ◽  
Han Wu ◽  
Jianbai Liu ◽  
Jihu Li ◽  
Yinglin Lu ◽  
...  

Abstract The genus Anastatus comprises a large group of parasitoids, including several biological control agents in agricultural and forest systems. The taxonomy and phylogeny of these species remain controversial. In this study, the mitogenome of A. fulloi Sheng and Wang was sequenced and characterized. The nearly full-length mitogenome of A. fulloi was 15,692 bp, compromising 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes and a control region (CR). The total A + T contents were 83.83%, 82.18%, 87.58%, 87.27%, and 82.13% in the whole mitogenome, 13 PCGs, 22 tRNA genes, 2 rRNA genes, and CR, respectively. The mitogenome presented negative AT skews and positive GC skews, except for the CR. Most PCGs were encoded on the majority strand, started with ATN codons, and ended with TAA codons. Among the 3736 amino acid-encoding codons, TTA (Leu1), CGA (Arg), TCA (Ser2), and TCT (Ser2) were predominant. Most tRNAs had cloverleaf secondary structures, except trnS1, with the absence of a dihydrouridine (DHU) arm. Compared with mitogenomes of the ancestral insect and another parasitoid within Eupelmidae, large-scale rearrangements were found in the mitogenome of A. fulloi, especially inversions and inverse transpositions of tRNA genes. The gene arrangements of parasitoid mitogenomes within Chalcidoidea were variable. A novel gene arrangement was presented in the mitogenome of A. fulloi. Phylogenetic analyses based on the 13 protein-coding genes of 20 parasitoids indicated that the phylogenetic relationship of 6 superfamilies could be presented as Mymaridae + (Eupelmidae + (Encyrtidae + (Trichogrammatidae + (Pteromalidae + Eulophidae)))). This study presents the first complete mitogenome of the Anastatus genus and offers insights into the identification, taxonomy, and phylogeny of these parasitoids.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Gurusamy Raman ◽  
Kyu Tae Park ◽  
JooHwan Kim ◽  
SeonJoo Park

Abstract Background The invasive species Xanthium spinosum has been used as a traditional Chinese medicine for many years. Unfortunately, no extensive molecular studies of this plant have been conducted. Results Here, the complete chloroplast (cp) genome sequence of X. spinosum was assembled and analyzed. The cp genome of X. spinosum was 152,422 base pairs (bp) in length, with a quadripartite circular structure. The cp genome contained 115 unique genes, including 80 PCGs, 31 tRNA genes, and 4 rRNA genes. Comparative analyses revealed that X. spinosum contains a large number of repeats (999 repeats) and 701 SSRs in its cp genome. Fourteen divergences (Π > 0.03) were found in the intergenic spacer regions. Phylogenetic analyses revealed that Parthenium is a sister clade to both Xanthium and Ambrosia and an early-diverging lineage of subtribe Ambrosiinae, although this finding was supported with a very weak bootstrap value. Conclusion The identified hotspot regions could be used as molecular markers for resolving phylogenetic relationships and species identification in the genus Xanthium.


2002 ◽  
Vol 48 (5) ◽  
pp. 387-398 ◽  
Author(s):  
A Fessehaie ◽  
S H De Boer ◽  
C A Lévesque

Sequences of 16S rDNAs and the intergenic spacer (IGS) regions between the 16S and 23S rDNA of bacterial strains from genus Erwinia were determined. Comparison of 16S rDNA sequences from different species and subspecies clearly revealed intraspecies–subspecies homology and interspecies heterogeneity. Phylogenetic analyses of 16S rDNA sequence data revealed that Erwinia spp. formed a discrete monophyletic clade with moderate to high bootstrap values. PCR amplification of the 16S–23S rDNA regions using primers complementary to the 3' end of 16S and 5' end of 23S rRNA genes generated two DNA fragments. The small 16S–23S rDNA IGS regions of Erwinia spp. examined in this study varied considerably in size and nucleotide sequence. Multiple sequence alignment and phylogenetic analysis of small IGS sequence data showed a consistent relationship among the test strains that was roughly in agreement with the 16S rDNA data that reflected the accepted species and subspecies structure of the taxon. Sequence data derived from the large IGS resolved the strains into coherent groups; however, the sequence information would not allow any phylogenetic conclusion, because it failed to reflect the accepted species structure of the test strains.Key words: Erwinia spp., 16S rDNA, intergenic spacer region, tRNA genes, phylogeny.


2020 ◽  
Author(s):  
Gurusamy Raman ◽  
KyuTae Park ◽  
Joo Hwan Kim ◽  
SeonJoo Park

Abstract Background: The invasive species Xanthium spinosum has been used as a traditional Chinese medicine for many years. Unfortunately, no extensive molecular studies of this plant have been conducted.Results: Here, the complete chloroplast (cp) genome sequence of X. spinosum was assembled and analyzed. The cp genome of X. spinosum was 152,422 base pairs (bp) in length, with a quadripartite circular structure. The cp genome contained 115 unique genes, including 80 PCGs, 31 tRNA genes, and 4 rRNA genes. Comparative analyses revealed that X. spinosum contains a large number of repeats (999 repeats) and 701 SSRs in its cp genome. Fourteen divergences (Pi > 0.03) were found in the intergenic spacer regions. Phylogenetic analyses revealed that Parthenium is a sister clade to both Xanthium and Ambrosia and an early-diverging lineage of subtribe Ambrosiinae, although this finding was supported with a very weak bootstrap value.Conclusion: The identified hotspot regions could be used as molecular markers for resolving phylogenetic relationships and species identification in the genus Xanthium.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1185
Author(s):  
Wenqian Wang ◽  
Huan Zhang ◽  
Jérôme Constant ◽  
Charles R. Bartlett ◽  
Daozheng Qin

The complete mitogenomes of nine fulgorid species were sequenced and annotated to explore their mitogenome diversity and the phylogenetics of Fulgoridae. All species are from China and belong to five genera: Dichoptera Spinola, 1839 (Dichoptera sp.); Neoalcathous Wang and Huang, 1989 (Neoalcathous huangshanana Wang and Huang, 1989); Limois Stål, 1863 (Limois sp.); Penthicodes Blanchard, 1840 (Penthicodes atomaria (Weber, 1801), Penthicodes caja (Walker, 1851), Penthicodes variegata (Guérin-Méneville, 1829)); Pyrops Spinola, 1839 (Pyrops clavatus (Westwood, 1839), Pyrops lathburii (Kirby, 1818), Pyrops spinolae (Westwood, 1842)). The nine mitogenomes were 15,803 to 16,510 bp in length with 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (A + T-rich region). Combined with previously reported fulgorid mitogenomes, all PCGs initiate with either the standard start codon of ATN or the nonstandard GTG. The TAA codon was used for termination more often than the TAG codon and the incomplete T codon. The nad1 and nad4 genes varied in length within the same genus. A high percentage of F residues were found in the nad4 and nad5 genes of all fulgorid mitogenomes. The DHU stem of trnV was absent in the mitogenomes of all fulgorids sequenced except Dichoptera sp. Moreover, in most fulgorid mitogenomes, the trnL2, trnR, and trnT genes had an unpaired base in the aminoacyl stem and trnS1 had an unpaired base in the anticodon stem. The similar tandem repeat regions of the control region were found in the same genus. Phylogenetic analyses were conducted based on 13 PCGs and two rRNA genes from 53 species of Fulgoroidea and seven outgroups. The Bayesian inference and maximum likelihood trees had a similar topological structure. The major results show that Fulgoroidea was divided into two groups: Delphacidae and ((Achilidae + (Lophopidae + (Issidae + (Flatidae + Ricaniidae)))) + Fulgoridae). Furthermore, the monophyly of Fulgoridae was robustly supported, and Aphaeninae was divided into Aphaenini and Pyropsini, which includes Neoalcathous, Pyrops, Datua Schmidt, 1911, and Saiva Distant, 1906. The genus Limois is recovered in the Aphaeninae, and the Limoisini needs further confirmation; Dichoptera sp. was the earliest branch in the Fulgoridae.


Sign in / Sign up

Export Citation Format

Share Document