scholarly journals YES-10, A Combination of Extracts from Clematis mandshurica RUPR. and Erigeron annuus (L.) PERS., Prevents Ischemic Brain Injury in A Gerbil Model of Transient Forebrain Ischemia

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 154 ◽  
Author(s):  
Tae-Kyeong Lee ◽  
Joon Ha Park ◽  
Bora Kim ◽  
Young Eun Park ◽  
Jae-Chul Lee ◽  
...  

Clematis mandshurica RUPR. (CMR) and Erigeron annuus (L.) PERS. (EALP) have pharmacological effects including anti-inflammatory activity and been used in traditional medicines in Asia. However, neuroprotective effects of CMR and/or EALP extracts against brain ischemic insults have never been addressed. Thus, the aim of this study was to examine neuroprotective effects of YES-10, a combination of extracts from CMR and EALP (combination ratio, 1:1), in the hippocampus following ischemia/reperfusion in gerbils. Protection of neurons was investigated by cresyl violet staining, fluoro-jade B histofluorescence staining and immunohistochemistry for neuronal nuclei. In addition, attenuation of gliosis was studied by immunohistochemistry for astrocytic and microglial markers. Treatments with 50 or 100 mg/kg YES-10 failed to protect neurons in the hippocampus after ischemia/reperfusion injury. However, administration of 200 mg/kg YES-10 protected neurons from ischemia/reperfusion injury and attenuated reactive gliosis. These findings strongly suggest that a combination of extracts from CMR and EALP can be used as a prevention approach/drug against brain ischemic damage.

2021 ◽  
Vol 12 (1) ◽  
pp. 210-217
Author(s):  
Yibiao Wang ◽  
Min Xu

Abstract Background This study aimed to explore the role of miR-380-5p in cerebral ischemia/reperfusion (CIR) injury-induced neuronal cell death and the potential signaling pathway involved. Methodology Human neuroblastoma cell line SH-SY5Y cells were used in this study. Oxygen and glucose deprivation/reperfusion (OGD/R) model was used to mimic ischemia/reperfusion injury. CCK-8 assay and flow cytometry were used to examine cell survival. Quantitative real time PCR (RT-qPCR) assay and Western blotting were used to measure the change of RNA and protein expression, respectively. TargetScan and Luciferase assay was used to confirm the target of miR-380-5p. Malondialdehyde (MDA) superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) were measured using commercial kits. Results miR-380-5p was downregulated in SH-SY5Y cells after OGD/R. Cell viability was increased by miR-380-5p, while cell apoptosis was reduced by miR-380-5p mimics. MDA was reduced by miR-380-5p mimics, while SOD and GSHPx were increased by miR-380-5p. Results of TargetScan and luciferase assay have showed that BACH1 is the direct target of miR-380-5p. Expression of NRF2 was upregulated after OGD/R, but was not affected by miR-380-5p. mRNA expression of HO-1 and NQO1 and ARE activity were increased by miR-380-5p. Overexpression of BACH1 reversed the antioxidant and neuroprotective effects of miR-380-5p. Conclusion miR-380-5p inhibited cell death induced by CIR injury through target BACH1 which also facilitated the activation of NRF2, indicating the antioxidant and neuroprotective effects of miR-380-5p.


Molecules ◽  
2015 ◽  
Vol 20 (8) ◽  
pp. 14487-14503 ◽  
Author(s):  
Denis Silachev ◽  
Egor Plotnikov ◽  
Ljubava Zorova ◽  
Irina Pevzner ◽  
Natalia Sumbatyan ◽  
...  

2004 ◽  
Vol 25 (1) ◽  
pp. 105-110 ◽  
Author(s):  
Serdar Akgun ◽  
Atike Tekeli ◽  
Ozlem Kurtkaya ◽  
Ali Civelek ◽  
Selim C Isbir ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 271-275
Author(s):  
Qing Hong ◽  
Junqiang Ye ◽  
Xijia Wang ◽  
Chao Zhang

Background: The purpose of this study was to investigate whether Gastrodin can activate the Notch 1 signaling pathway in the ischemic brain area to produce neuroprotective effects against cerebral ischemia-reperfusion injury, and to elucidate the role of Notch 1 and NF-κB signaling pathways in the Gastrodin-induced cerebral ischemic tolerance. Material and methods: The focal cerebral ischemia reperfusion model of middle cerebral artery embolism was established. TTC staining was applied to detect cerebral infarction. Tunel/NeuN immunofluorescence double labeling was employed to detect apoptosis. WB was used to detect the expressions of proteins related to the Notch 1 and NF-κB pathways. Results: Gastrodin can reduce neuron apoptosis in hippocampus after MCAO/R injury. After DAPT blocked Notch 1 signaling, the neuroprotective effects of Gastrodin improving neural function score, reducing cerebral infarction volume, and inhibiting neuronal apoptosis, were all reversed. Compared with the MCAO/R group, DAPT blocking Notch 1 signaling can also improve the neurological score of rats after MCAO/R injury, reduce cerebral infarct volume, and reduce neuronal apoptosis. Gastrodin can activate Notch 1 and NF-κB signaling pathways in cerebral ischemic areas and increase the expression of related proteins. After DAPT inhibited the Notch 1 signaling in the ipsilateral brain region, the phosphorylation level was significantly decreased, indicating that the activity of the NF-κB pathway was regulated by the Notch 1 signaling. Conclusion: Gastrodin-mediated protection against cerebral ischemia-reperfusion injury is related to the activation of Notch 1 signaling and the up-regulation of NF-κB signaling pathway activity in neurons of ischemic brain area.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuai Yang ◽  
Bin Hu ◽  
Zongming Wang ◽  
Changming Zhang ◽  
Haosen Jiao ◽  
...  

Abstract Activation of the cannabinoid CB1 receptor induces neuroprotection against brain ischemia/reperfusion injury (IRI); however, the mechanism is still unknown. In this study, we used oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in neuronal cells and middle cerebral artery occlusion (MCAO)-induced brain IRI in rats to mimic ischemic brain injury, and hypothesized that the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA) would protect ischemic neurons by inhibiting mitochondrial fission via dynamin-related protein 1 (Drp1). We found that OGD/R injury reduced cell viability and mitochondrial function, increased lactate dehydrogenase (LDH) release, and increased cell apoptosis, and mitochondrial fission. Notably, ACEA significantly abolished the OGD/R-induced neuronal injuries described above. Similarly, ACEA significantly reversed MCAO-induced increases in brain infarct volume, neuronal apoptosis and mitochondrial fission, leading to the recovery of neurological functions. The neuroprotective effects of ACEA were obviously blocked by coadministration of the CB1 receptor antagonist AM251 or by the upregulation of Drp1 expression, indicating that ACEA alleviates brain IRI via the CB1–Drp1 pathway. Our findings suggest that the CB1 receptor links aberrant mitochondrial fission to brain IRI, providing a new therapeutic target for brain IRI treatment.


2018 ◽  
Vol 120 ◽  
pp. e33-e41 ◽  
Author(s):  
Emre Durdag ◽  
Zuhal Yildirim ◽  
Nese Lortlar Unlu ◽  
Aydemir Kale ◽  
Necdet Ceviker

Sign in / Sign up

Export Citation Format

Share Document