scholarly journals Viscoelastic Rheological Behaviors of Polypropylene and LMPP Blends

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3485
Author(s):  
Feichao Zhu ◽  
Sohail Yasin ◽  
Munir Hussain

Dynamic oscillatory shear testing is used to investigate polymeric viscoelastic behaviors. Small and large amplitude oscillatory shear tests are the canonical method for characterizing the linear and nonlinear viscoelastic behaviors of any polymeric material. With prominent and abundant work on linear viscoelastic studies, the nonlinear behavior is evasive in terms of generating infinite higher harmonics in the nonlinear regime. For this reason, intrinsic nonlinearities from large amplitude oscillatory shear (LAOS) studies have recently been used for insights on microstructural behaviors. This study is carried out for linear and nonlinear viscoelastic behavior with a main focus on LAOS of isostatic polypropylene (iPP) and relatively new low molecular weight and low modulus polypropylene-based polyolefin (LMPP) blends. The morphological results showed reduced spherulitic crystal nucleus size and increased distribution in blends with increasing LMPP. The blends showed subtle linear viscoelastic responses with strong nonlinear mechanical responses to variant strain and stress compared to pure iPP. The intracycle strain thickening and intracycle strain stiffening of high-content LMPP blends were comparatively dominant at medium strain amplitudes.

1994 ◽  
Vol 116 (1) ◽  
pp. 14-18 ◽  
Author(s):  
A. J. Giacomin ◽  
R. S. Jeyaseelan

The nonlinear viscoelastic behavior of molten plastics is often attributed to interactions between long-chain molecules. Entanglement theories model this behavior with a network of junctions. Whether this network deforms differently than the liquid is a question of considerable interest to polymer engineers since nonlinear viscoelasticity governs many plastics processing operations. In this paper, large amplitude oscillatory shear flow is used to measure how affine the network deformation is relative to the deforming melt. For a low-density polyethylene melt, a small amount of nonaffine network deformation is observed when the large amplitude oscillations are analyzed with a nonaffine structural network theory. Inaccurate predictions were obtained from both the nonaffine network theory due to Phan-Thien, and the nonaffine network strand theory due to Larson.


Author(s):  
Masoud Hemmatian ◽  
Ramin Sedaghati ◽  
Subhash Rakheja

This study aims to investigate the influence of temperature on the linear and nonlinear rheological behavior of a MR fluid, MRF 132DG, using a rotational rheometer. The experiments were designed to obtain properties of the fluid under oscillatory shear strain in the amplitude and frequency sweep modes, while maintaining different constant temperatures (−5, 0, 20 and 50 °C). The data were used to evaluate the storage and loss moduli under different levels of magnetic flux density considering the linear as well as nonlinear viscoelastic regions. The critical strain amplitudes were further obtained. Results showed enhanced linear viscoelastic region with increasing magnetic field density. Moreover, the effects of temperature and magnetic field on the frequency dependency of the fluid properties are illustrated for small and large amplitudes of shear strains.


Sign in / Sign up

Export Citation Format

Share Document