protein isolate
Recently Published Documents


TOTAL DOCUMENTS

3693
(FIVE YEARS 1348)

H-INDEX

92
(FIVE YEARS 18)

2022 ◽  
Vol 31 ◽  
pp. 100796
Author(s):  
Youssra Ben Azaza ◽  
Marwa Hamdi ◽  
Christophe Charmette ◽  
Mourad Jridi ◽  
Suming Li ◽  
...  

2022 ◽  
Vol 124 ◽  
pp. 107264
Author(s):  
Fangcheng Jiang ◽  
Yijun Pan ◽  
Dengfeng Peng ◽  
Wenjing Huang ◽  
Wangyang Shen ◽  
...  

2022 ◽  
Vol 177 ◽  
pp. 114431
Author(s):  
Derong Lin ◽  
Lijuan Xiao ◽  
Suqing Li ◽  
Wen Qin ◽  
Douglas A. Loy ◽  
...  

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 282
Author(s):  
Katarzyna Klimek ◽  
Marta Tarczynska ◽  
Wieslaw Truszkiewicz ◽  
Krzysztof Gaweda ◽  
Timothy E. L. Douglas ◽  
...  

The purpose of this pilot study was to establish whether a novel freeze-dried curdlan/whey protein isolate-based biomaterial may be taken into consideration as a potential scaffold for matrix-associated autologous chondrocyte transplantation. For this reason, this biomaterial was initially characterized by the visualization of its micro- and macrostructures as well as evaluation of its mechanical stability, and its ability to undergo enzymatic degradation in vitro. Subsequently, the cytocompatibility of the biomaterial towards human chondrocytes (isolated from an orthopaedic patient) was assessed. It was demonstrated that the novel freeze-dried curdlan/whey protein isolate-based biomaterial possessed a porous structure and a Young’s modulus close to those of the superficial and middle zones of cartilage. It also exhibited controllable degradability in collagenase II solution over nine weeks. Most importantly, this biomaterial supported the viability and proliferation of human chondrocytes, which maintained their characteristic phenotype. Moreover, quantitative reverse transcription PCR analysis and confocal microscope observations revealed that the biomaterial may protect chondrocytes from dedifferentiation towards fibroblast-like cells during 12-day culture. Thus, in conclusion, this pilot study demonstrated that novel freeze-dried curdlan/whey protein isolate-based biomaterial may be considered as a potential scaffold for matrix-associated autologous chondrocyte transplantation.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
Saqib Gulzar ◽  
Krisana Nilsuwan ◽  
Navaneethan Raju ◽  
Soottawat Benjakul

Shrimp oil (SO) rich in n-3 fatty acids and astaxanthin, mixed with antioxidant-rich tea seed oil (TSO), was microencapsulated using mung bean protein isolate and sodium alginate and fortified into whole wheat crackers. SO and TSO mixed in equal proportions were emulsified in a solution containing mung bean protein isolate (MBPI) and sodium alginate (SA) at varied ratios. The emulsions were spray-dried to entrap SO-TSO in MBPI-SA microcapsules. MBPI-SA microcapsules loaded with SO-TSO showed low to moderately high encapsulation efficiencies (EE) of 32.26–72.09% and had a fair flowability index. Two selected microcapsules with high EE possessed the particle sizes of 1.592 and 1.796 µm with moderate PDI of 0.372 and 0.403, respectively. Zeta potential values were −54.81 mV and −53.41 mV. Scanning electron microscopic (SEM) images indicated that microcapsules were spherical in shape with some shrinkage on the surface and aggregation took place to some extent. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analyses of samples empirically validated the presence of SO-TSO in the microcapsules. Encapsulated SO-TSO showed superior oxidative stability and retention of polyunsaturated fatty acids (PUFAs) to unencapsulated counterparts during storage of 6 weeks. When SO-TSO microcapsules were fortified in whole wheat crackers at varying levels (0–10%), the crackers showed sensorial acceptability with no perceivable fishy odor. Thus, microencapsulation of SO-TSO using MBPI-SA as wall materials could be used as an alternative carrier system, in which microcapsules loaded with PUFAs could be fortified in a wide range of foods.


2022 ◽  
Author(s):  
Nikita Pozdnyakov ◽  
Sergey Shilov ◽  
Alexandr Mikhailovich Lukin ◽  
Maxim Bolshakov ◽  
Evgeny Sogorin

Abstract Soy protein isolate is a worthy substitute for meat protein. However, its low level of digestibility limits its spread to new market niches. This problem can be solved by enzymatic hydrolysis of soy protein to peptides. Several research teams have already been solving this problem, but their results were obtained under laboratory conditions and do not provide information about the reproducibility of the results on an industrial scale. In this paper, we have compared the results of laboratory and semi-industrial experiments of enzymatic hydrolysis of protein. Also the kinetics of the reaction under different conditions is shown, and the final product is characterized. The obtained results of semi-industrial experiments can form the basis of industrial regulations for the production of soy protein hydrolysate as an easily digestible form of dietary protein for athletes and patients with digestive disorders.


Sign in / Sign up

Export Citation Format

Share Document