scholarly journals Rare Event Chance-Constrained Optimal Control Using Polynomial Chaos and Subset Simulation

Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 185 ◽  
Author(s):  
Patrick Piprek ◽  
Sébastien Gros ◽  
Florian Holzapfel

This study develops a ccoc framework capable of handling rare event probabilities. Therefore, the framework uses the gpc method to calculate the probability of fulfilling rare event constraints under uncertainties. Here, the resulting cc evaluation is based on the efficient sampling provided by the gpc expansion. The subsim method is used to estimate the actual probability of the rare event. Additionally, the discontinuous cc is approximated by a differentiable function that is iteratively sharpened using a homotopy strategy. Furthermore, the subsim problem is also iteratively adapted using another homotopy strategy to improve the convergence of the Newton-type optimization algorithm. The applicability of the framework is shown in case studies regarding battery charging and discharging. The results show that the proposed method is indeed capable of incorporating very general cc within an ocp at a low computational cost to calculate optimal results with rare failure probability cc.

Author(s):  
Zhonglai Wang ◽  
Zissimos P. Mourelatos ◽  
Jing Li ◽  
Amandeep Singh ◽  
Igor Baseski

Time-dependent reliability is the probability that a system will perform its intended function successfully for a specified time. Unless many and often unrealistic assumptions are made, the accuracy and efficiency of time-dependent reliability estimation are major issues which may limit its practicality. Monte Carlo simulation (MCS) is accurate and easy to use but it is computationally prohibitive for high dimensional, long duration, time-dependent (dynamic) systems with a low failure probability. This work addresses systems with random parameters excited by stochastic processes. Their response is calculated by time integrating a set of differential equations at discrete times. The limit state functions are therefore, explicit in time and depend on time-invariant random variables and time-dependent stochastic processes. We present an improved subset simulation with splitting approach by partitioning the original high dimensional random process into a series of correlated, short duration, low dimensional random processes. Subset simulation reduces the computational cost by introducing appropriate intermediate failure sub-domains to express the low failure probability as a product of larger conditional failure probabilities. Splitting is an efficient sampling method to estimate the conditional probabilities. The proposed subset simulation with splitting not only estimates the time-dependent probability of failure at a given time but also estimates the cumulative distribution function up to that time with approximately the same cost. A vibration example involving a vehicle on a stochastic road demonstrates the advantages of the proposed approach.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Loïc Brevault ◽  
Sylvain Lacaze ◽  
Mathieu Balesdent ◽  
Samy Missoum

The design of complex systems often requires reliability assessments involving a large number of uncertainties and low probability of failure estimations (in the order of 10−4). Estimating such rare event probabilities with crude Monte Carlo (CMC) is computationally intractable. Specific numerical methods to reduce the computational cost and the variance estimate have been developed such as importance sampling or subset simulation. However, these methods assume that the uncertainties are defined within the probability formalism. Regarding epistemic uncertainties, the interval formalism is particularly adapted when only their definition domain is known. In this paper, a method is derived to assess the reliability of a system with uncertainties described by both probability and interval frameworks. It allows one to determine the bounds of the failure probability and involves a sequential approach using subset simulation, kriging, and an optimization process. To reduce the simulation cost, a refinement strategy of the surrogate model is proposed taking into account the presence of both aleatory and epistemic uncertainties. The method is compared to existing approaches on an analytical example as well as on a launch vehicle fallout zone estimation problem.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Zhonglai Wang ◽  
Zissimos P. Mourelatos ◽  
Jing Li ◽  
Igor Baseski ◽  
Amandeep Singh

Time-dependent reliability is the probability that a system will perform its intended function successfully for a specified time. Unless many and often unrealistic assumptions are made, the accuracy and efficiency of time-dependent reliability estimation are major issues which may limit its practicality. Monte Carlo simulation (MCS) is accurate and easy to use, but it is computationally prohibitive for high dimensional, long duration, time-dependent (dynamic) systems with a low failure probability. This work is relevant to systems with random parameters excited by stochastic processes. Their response is calculated by time integrating a set of differential equations at discrete times. The limit state functions are, therefore, explicit in time and depend on time-invariant random variables and time-dependent stochastic processes. We present an improved subset simulation with splitting approach by partitioning the original high dimensional random process into a series of correlated, short duration, low dimensional random processes. Subset simulation reduces the computational cost by introducing appropriate intermediate failure sub-domains to express the low failure probability as a product of larger conditional failure probabilities. Splitting is an efficient sampling method to estimate the conditional probabilities. The proposed subset simulation with splitting not only estimates the time-dependent probability of failure at a given time but also estimates the cumulative distribution function up to that time with approximately the same cost. A vibration example involving a vehicle on a stochastic road demonstrates the advantages of the proposed approach.


2014 ◽  
Vol 39 (5) ◽  
pp. 679-689 ◽  
Author(s):  
Xiong-Lin LUO ◽  
Xiao-Long ZHOU ◽  
Shu-Bin WANG

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 645
Author(s):  
Muhammad Farooq ◽  
Sehrish Sarfraz ◽  
Christophe Chesneau ◽  
Mahmood Ul Hassan ◽  
Muhammad Ali Raza ◽  
...  

Expectiles have gained considerable attention in recent years due to wide applications in many areas. In this study, the k-nearest neighbours approach, together with the asymmetric least squares loss function, called ex-kNN, is proposed for computing expectiles. Firstly, the effect of various distance measures on ex-kNN in terms of test error and computational time is evaluated. It is found that Canberra, Lorentzian, and Soergel distance measures lead to minimum test error, whereas Euclidean, Canberra, and Average of (L1,L∞) lead to a low computational cost. Secondly, the performance of ex-kNN is compared with existing packages er-boost and ex-svm for computing expectiles that are based on nine real life examples. Depending on the nature of data, the ex-kNN showed two to 10 times better performance than er-boost and comparable performance with ex-svm regarding test error. Computationally, the ex-kNN is found two to five times faster than ex-svm and much faster than er-boost, particularly, in the case of high dimensional data.


Author(s):  
Seyede Vahide Hashemi ◽  
Mahmoud Miri ◽  
Mohsen Rashki ◽  
Sadegh Etedali

This paper aims to carry out sensitivity analyses to study how the effect of each design variable on the performance of self-centering buckling restrained brace (SC-BRB) and the corresponding buckling restrained brace (BRB) without shape memory alloy (SMA) rods. Furthermore, the reliability analyses of BRB and SC-BRB are performed in this study. Considering the high computational cost of the simulation methods, three Meta-models including the Kriging, radial basis function (RBF), and polynomial response surface (PRSM) are utilized to construct the surrogate models. For this aim, the nonlinear dynamic analyses are conducted on both BRB and SC-BRB by using OpenSees software. The results showed that the SMA area, SMA length ratio, and BRB core area have the most effect on the failure probability of SC-BRB. It is concluded that Kriging-based Monte Carlo Simulation (MCS) gives the best performance to estimate the limit state function (LSF) of BRB and SC-BRB in the reliability analysis procedures. Considering the effects of changing the maximum cyclic loading on the failure probability computation and comparison of the failure probability for different LSFs, it is also found that the reliability indices of SC-BRB were always higher than the corresponding reliability indices determined for BRB which confirms the performance superiority of SC-BRB than BRB.


Sign in / Sign up

Export Citation Format

Share Document