scholarly journals Spray Drying for the Preparation of Nanoparticle-Based Drug Formulations as Dry Powders for Inhalation

Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 788 ◽  
Author(s):  
Maria Malamatari ◽  
Anastasia Charisi ◽  
Stavros Malamataris ◽  
Kyriakos Kachrimanis ◽  
Ioannis Nikolakakis

Nanoparticle-based therapeutics have been used in pulmonary formulations to enhance delivery of poorly water-soluble drugs, protect drugs against degradation and achieve modified release and drug targeting. This review focuses on the use of spray drying as a solidification technique to produce microparticles containing nanoparticles (i.e., nanoparticle (NP) agglomerates) with suitable properties as dry powders for inhalation. The review covers the general aspects of pulmonary drug delivery with emphasis on nanoparticle-based dry powders for inhalation and the principles of spray drying as a method for the conversion of nanosuspensions to microparticles. The production and therapeutic applications of the following types of NP agglomerates are presented: nanoporous microparticles, nanocrystalline agglomerates, lipid-based and polymeric formulations. The use of alternative spray-drying techniques, namely nano spray drying, and supercritical CO2-assisted spray drying is also discussed as a way to produce inhalable NP agglomerates.

2007 ◽  
Vol 336 (1) ◽  
pp. 22-34 ◽  
Author(s):  
James E. Patterson ◽  
Michael B. James ◽  
Angus H. Forster ◽  
Robert W. Lancaster ◽  
James M. Butler ◽  
...  

Author(s):  
Nguyen Van Khanh ◽  
Ta Thi Thu ◽  
Hoang Anh Tuan

Abstract: The poor solubility of rutin leads to poor bioavailability. The present study is aimed to increase the solubility and bioavailability of rutin using solid dispersion technique. The solid dispersions of rutin were prepared by spray-dried method using β-CD, HPMC E6, HPMC E15, PVP K30, SLS, poloxamer 188 and Tween 80 as carriers. The interaction of rutin with the carriers was evaluated by using methods such as dissolved measurement, Fourier-transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The optimization of formulation was carried out by using Central Composite Face design. Independent variables include PVP K30/rutin ratio, Tween 80/rutin ratio, inlet air temperature, and feed flow rate. Dependent variables are the dissolution and product yield. The optimized preparation conditions for rutin solid dispersions were obtained as PVP K30: rutin at a ratio of 5.77, Tween 80: rutin at a ratio of 0.14, inlet temperature of 110.05, flow rate of 1370.9 ml per hour. The results of this study indicate that the solid dispersion of rutin increases significantly the dissolution of rutin in comparison with rutin. The results of the DSC and XRD studies prove the state transition of rutin from crystalline to amorphous. Keywords Rutin, solid dispersion, spray drying, PVP K30, dissolution. References [1] Beatriz Gullón, Thelmo A. Lú-Chau, María Teresa Moreira, Juan M. Lema, Gemman Eibes, Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability, Trends in Food Science & Technology 67 (2017) 220-235. https://doi.org/10.1016/j.tifs.2017.07.008.[2] Carla Aparecida Pedriali, Adjaci Uchoa Fernandes, Leandra de Cássia Bernusso, Bronislaw Polakiewicz, The synthesis of a water-soluble derivative of rutin as an antiradical agent, Química Nova 31(8) (2008) 2147-2151. http://dx.doi.org/10.1590/S0100-40422008000800039.[3] Chiou, Win Loung, Riegelman, Sidney, Pharmaceutical applications of solid dispersion systems, Journal of pharmaceutical sciences 60(9) (1971) 1281-1302. https://doi.org/10.1002/jps.2600600902.[4] Xingwang Zhang, Huijie Xing,Yue Zhao, Zhiguo Ma, Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs, Pharmaceutics 10(3) (2018) 1-33. https://doi.org/10.3390/pharmaceutics10030074.[5] Ladan Akbarpour Nikghalb, Gurinder Singh, Gaurav Singh, Kimia Fazaeli Kahkeshan, Solid Dispersion: Methods and Polymers to increase the solubility of poorly soluble drugs, Journal of Applied Pharmaceutical Science 2(10) (2012) 170-175. https://doi.org/10.7324/JAPS.2012.2103.[6] Amrit Paudel, Zelalem Ayenew Worku, Joke Meeus, Sandra Guns, Guy Van den Mooter, Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations, International Journal of Pharmaceutics 453(1) (2013) 253-284. https://doi.org/10.1016/j.ijpharm.2012.07.015.[7] P.B. Dalvi, A.B. Gerange, R. IngaleP, Solid dispersion: strategy to enhance solubility, Journal of Drug Delivery & Therapeutics 5(2) (2015) 20-28. https://doi.org/10.22270/jddt.v5i2.1060.[8] Chau Le Ngoc Vo, Chulhun Park, Beom Jin Lee, Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics 85(3) (2013) 799-813. https://doi.org/10.1016/j.ejpb.2013.09.007.[9] I.V. Koval’skii, I.I. Krasnyuk, I.I. Krasnyuk, O.I. Nikulina, A.V. Belyatskaya, Yu. Ya. Kharitonov, N.B. Fel’dman, S.V. Lutsenko, V.V. Grikh, Studies of the Solubility of Rutin from Solid Dispersions, Pharmaceutical Chemistry Journal 47(11) (2014) 612-615. https://doi.org/10.1007/s11094-014-1020-z.  


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Shivarani Eesam ◽  
Jaswanth S. Bhandaru ◽  
Chandana Naliganti ◽  
Ravi Kumar Bobbala ◽  
Raghuram Rao Akkinepally

Abstract Background Increasing hydrophilicity of poorly water-soluble drugs is a major challenge in drug discovery and development. Cocrystallization is one of the techniques to enhance the hydrophilicity of such drugs. Carvedilol (CAR), a nonselective beta/alpha1 blocker, used in the treatment of mild to moderate congestive heart failure and hypertension, is classified under BCS class II with poor aqueous solubility and high permeability. Present work is an attempt to improve the solubility of CAR by preparing cocrystals using hydrochlorothiazide (HCT), a diuretic drug, as coformer. CAR-HCT (2:0.5) cocrystals were prepared by slurry conversion method and were characterized by DSC, PXRD, FTIR, Raman, and SEM analysis. The solubility, stability, and dissolution (in vitro) studies were conducted for the cocrystals. Results The formation of CAR-HCT cocrystals was confirmed based on melting point, DSC thermograms, PXRD data, FTIR and Raman spectra, and finally by SEM micrographs. The solubility of the prepared cocrystals was significantly enhanced (7.3 times), and the dissolution (in vitro) was improved by 2.7 times as compared to pure drug CAR. Further, these cocrystals were also found to be stable for 3 months (90 days). Conclusion It may be inferred that the drug–drug (CAR-HCT) cocrystallization enhances the solubility and dissolution rate of carvedilol significantly. Further, by combining HCT as coformer could well be beneficial pharmacologically too.


Sign in / Sign up

Export Citation Format

Share Document