scholarly journals A Review on Recent Progress in Machine Learning and Deep Learning Methods for Cancer Classification on Gene Expression Data

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1466
Author(s):  
Aina Umairah Mazlan ◽  
Noor Azida Sahabudin ◽  
Muhammad Akmal Remli ◽  
Nor Syahidatul Nadiah Ismail ◽  
Mohd Saberi Mohamad ◽  
...  

Data-driven model with predictive ability are important to be used in medical and healthcare. However, the most challenging task in predictive modeling is to construct a prediction model, which can be addressed using machine learning (ML) methods. The methods are used to learn and trained the model using a gene expression dataset without being programmed explicitly. Due to the vast amount of gene expression data, this task becomes complex and time consuming. This paper provides a recent review on recent progress in ML and deep learning (DL) for cancer classification, which has received increasing attention in bioinformatics and computational biology. The development of cancer classification methods based on ML and DL is mostly focused on this review. Although many methods have been applied to the cancer classification problem, recent progress shows that most of the successful techniques are those based on supervised and DL methods. In addition, the sources of the healthcare dataset are also described. The development of many machine learning methods for insight analysis in cancer classification has brought a lot of improvement in healthcare. Currently, it seems that there is highly demanded further development of efficient classification methods to address the expansion of healthcare applications.

2020 ◽  
Vol 21 (S14) ◽  
Author(s):  
Evan A. Clayton ◽  
Toyya A. Pujol ◽  
John F. McDonald ◽  
Peng Qiu

Abstract Background Machine learning has been utilized to predict cancer drug response from multi-omics data generated from sensitivities of cancer cell lines to different therapeutic compounds. Here, we build machine learning models using gene expression data from patients’ primary tumor tissues to predict whether a patient will respond positively or negatively to two chemotherapeutics: 5-Fluorouracil and Gemcitabine. Results We focused on 5-Fluorouracil and Gemcitabine because based on our exclusion criteria, they provide the largest numbers of patients within TCGA. Normalized gene expression data were clustered and used as the input features for the study. We used matching clinical trial data to ascertain the response of these patients via multiple classification methods. Multiple clustering and classification methods were compared for prediction accuracy of drug response. Clara and random forest were found to be the best clustering and classification methods, respectively. The results show our models predict with up to 86% accuracy; despite the study’s limitation of sample size. We also found the genes most informative for predicting drug response were enriched in well-known cancer signaling pathways and highlighted their potential significance in chemotherapy prognosis. Conclusions Primary tumor gene expression is a good predictor of cancer drug response. Investment in larger datasets containing both patient gene expression and drug response is needed to support future work of machine learning models. Ultimately, such predictive models may aid oncologists with making critical treatment decisions.


2020 ◽  
Author(s):  
Hryhorii Chereda ◽  
Annalen Bleckmann ◽  
Kerstin Menck ◽  
Júlia Perera-Bel ◽  
Philip Stegmaier ◽  
...  

AbstractMotivationContemporary deep learning approaches show cutting-edge performance in a variety of complex prediction tasks. Nonetheless, the application of deep learning in healthcare remains limited since deep learning methods are often considered as non-interpretable black-box models. Layer-wise Relevance Propagation (LRP) is a technique to explain decisions of deep learning methods. It is widely used to interpret Convolutional Neural Networks (CNNs) applied on image data. Recently, CNNs started to extend towards non-euclidean domains like graphs. Molecular networks are commonly represented as graphs detailing interactions between molecules. Gene expression data can be assigned to the vertices of these graphs. In other words, gene expression data can be structured by utilizing molecular network information as prior knowledge. Graph-CNNs can be applied to structured gene expression data, for example, to predict metastatic events in breast cancer. Therefore, there is a need for explanations showing which part of a molecular network is relevant for predicting an event, e.g. distant metastasis in cancer, for each individual patient.ResultsWe extended the procedure of LRP to make it available for Graph-CNN and tested its applicability on a large breast cancer dataset. We present Graph Layer-wise Relevance Propagation (GLRP) as a new method to explain the decisions made by Graph-CNNs. We demonstrate a sanity check of the developed GLRP on a hand-written digits dataset, and then applied the method on gene expression data. We show that GLRP provides patient-specific molecular subnetworks that largely agree with clinical knowledge and identify common as well as novel, and potentially druggable, drivers of tumor progression. As a result this method could be potentially highly useful on interpreting classification results on the individual patient level, as for example in precision medicine approaches or a molecular tumor board.Availabilityhttps://gitlab.gwdg.de/UKEBpublic/graph-lrphttps://frankkramer-lab.github.io/MetaRelSubNetVis/[email protected]


2021 ◽  
Vol 12 (2) ◽  
pp. 2422-2439

Cancer classification is one of the main objectives for analyzing big biological datasets. Machine learning algorithms (MLAs) have been extensively used to accomplish this task. Several popular MLAs are available in the literature to classify new samples into normal or cancer populations. Nevertheless, most of them often yield lower accuracies in the presence of outliers, which leads to incorrect classification of samples. Hence, in this study, we present a robust approach for the efficient and precise classification of samples using noisy GEDs. We examine the performance of the proposed procedure in a comparison of the five popular traditional MLAs (SVM, LDA, KNN, Naïve Bayes, Random forest) using both simulated and real gene expression data analysis. We also considered several rates of outliers (10%, 20%, and 50%). The results obtained from simulated data confirm that the traditional MLAs produce better results through our proposed procedure in the presence of outliers using the proposed modified datasets. The further transcriptome analysis found the significant involvement of these extra features in cancer diseases. The results indicated the performance improvement of the traditional MLAs with our proposed procedure. Hence, we propose to apply the proposed procedure instead of the traditional procedure for cancer classification.


Sign in / Sign up

Export Citation Format

Share Document