scholarly journals Optimal Quick-Response Variable Structure Control for Highly Efficient Single-Phase Sine-Wave Inverters

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2132
Author(s):  
En-Chih Chang ◽  
Hung-Liang Cheng ◽  
Chien-Hsuan Chang ◽  
Rong-Ching Wu ◽  
Hong-Wei Xu ◽  
...  

This paper puts forward an optimal quick-response variable structure control with a single-phase sine-wave inverter application, which keeps harmonic distortion as low as possible under various conditions of loading. Our proposed solution gives an improvement in architecture in which a quick-response variable structure control (QRVSC) is combined with a brain storm optimization (BSO) algorithm. Notwithstanding the intrinsic resilience of a typical VSC with respect to changes in plant parameters and loading disruptions, the system state convergence towards zero normally proceeds at an infinitely long-time asymptotically, and chattering behavior frequently takes place. The QRVSC for ensuring speedy limited-time convergence with the system state to the balancing point is devised, whilst the BSO will be employed to appropriately regulate the parametric gains in the QRVSC for the elimination of chattering phenomena. From the mix of both a QRVSC together with a BSO, a low total harmonic distortion (THD) as well as a high dynamic response across different types of loading is generated by a closed-loop inverter. The proposed solution is implemented on a practicable single-phase sine-wave inverter under the control of a TI DSP (Texas Instruments Digital Signal Processor). It has experimentally shown the simulation findings as well as the mathematical theoretical analysis, displaying that both quick transient reaction as well as stable performance could be obtained. The proposed solution successfully inhibits voltage harmonics in compliance with IEEE 519-2014’s stringent standard of limiting THD values to less than 5%.

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 282 ◽  
Author(s):  
Cong-Trang Nguyen ◽  
Thanh Long Duong ◽  
Minh Quan Duong ◽  
Duc Tung Le

Variable structure control with sliding mode can provide good control performance and excellent robustness. Unfortunately, the chattering phenomenon investigated due to discontinuous switching gain restricting their applications. In this paper, a chattering free improved variable structure control (IVSC) for a class of mismatched uncertain interconnected systems with an unknown time-varying delay is proposed. A sliding function is first established to eliminate the reaching phase in traditional variable structure control (TVSC). Next, a new reduced-order sliding mode estimator (ROSME) without time-varying delay is constructed to estimate all unmeasurable state variables of plants. Then, based on the Moore-Penrose inverse approach, a decentralized single-phase robustness sliding mode controller (DSPRSMC) is synthesized, which is independent of time delays. A DSPRSMC solves a complex interconnection problem with an unknown time-varying delay term and drives the system’s trajectories onto a switching surface from the initial time instance. Particularly, by applying the well-known Barbalat’s lemma, the chattering phenomenon in control input is alleviated. Moreover, a sufficient condition is established by using an appropriate Lyapunov theory and linear matrix inequality (LMI) method such that a sliding mode dynamics is asymptotically stable from the beginning time. Finally, a developed method is validated by numerical example with computer simulations.


Sign in / Sign up

Export Citation Format

Share Document