scholarly journals How Much We Gain by Surplus-Dependent Premiums—Asymptotic Analysis of Ruin Probability

Risks ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 157
Author(s):  
Jing Wang ◽  
Zbigniew Palmowski ◽  
Corina Constantinescu

In this paper, we generate boundary value problems for ruin probabilities of surplus-dependent premium risk processes, under a renewal case scenario, Erlang (2) claim arrivals, and a hypoexponential claims scenario, Erlang (2) claim sizes. Applying the approximation theory of solutions of linear ordinary differential equations, we derive the asymptotics of the ruin probabilities when the initial reserve tends to infinity. When considering premiums that are linearly dependent on reserves, representing, for instance, returns on risk-free investments of the insurance capital, we firstly derive explicit solutions of the ordinary differential equations under considerations, in terms of special mathematical functions and integrals, from which we can further determine their asymptotics. This allows us to recover the ruin probabilities obtained for general premiums dependent on reserves. We compare them with the asymptotics of the equivalent ruin probabilities when the premium rate is fixed over time, to measure the gain generated by this additional mechanism of binding the premium rates with the amount of reserve owned by the insurance company.

2021 ◽  
Vol 21 (2) ◽  
pp. 569-588
Author(s):  
KINZA ARSHAD ◽  
MUHAMMAD ASHRAF

In the present work, two dimensional flow of a hyperbolic tangent fluid with chemical reaction and viscous dissipation near a stagnation point is discussed numerically. The analysis is performed in the presence of magnetic field. The governing partial differential equations are converted into non-linear ordinary differential equations by using appropriate transformation. The resulting higher order non-linear ordinary differential equations are discretized by finite difference method and then solved by SOR (Successive over Relaxation parameter) method. The impact of the relevant parameters is scrutinized by plotting graphs and discussed in details. The main conclusion is that the large value of magnetic field parameter and wiessenberg numbers decrease the streamwise and normal velocity while increase the temperature distribution. Also higher value of the Eckert number Ec results in increases in temperature profile.


Sign in / Sign up

Export Citation Format

Share Document