MHD STAGNATION POINT FLOW OF HYPERBOLIC TANGENT FLUID WITH VISCOUS DISSIPATION AND CHEMICAL REACTION

2021 ◽  
Vol 21 (2) ◽  
pp. 569-588
Author(s):  
KINZA ARSHAD ◽  
MUHAMMAD ASHRAF

In the present work, two dimensional flow of a hyperbolic tangent fluid with chemical reaction and viscous dissipation near a stagnation point is discussed numerically. The analysis is performed in the presence of magnetic field. The governing partial differential equations are converted into non-linear ordinary differential equations by using appropriate transformation. The resulting higher order non-linear ordinary differential equations are discretized by finite difference method and then solved by SOR (Successive over Relaxation parameter) method. The impact of the relevant parameters is scrutinized by plotting graphs and discussed in details. The main conclusion is that the large value of magnetic field parameter and wiessenberg numbers decrease the streamwise and normal velocity while increase the temperature distribution. Also higher value of the Eckert number Ec results in increases in temperature profile.

2021 ◽  
Vol 10 (1) ◽  
pp. 255-271
Author(s):  
Bhupendra K. Sharma ◽  
Chandan Kumawat

Abstract A study has been carried for a viscous, incompressible electrically conducting MHD blood flow with temperature-dependent thermal conductivity and viscosity through a stretching surface in the presence of thermal radiation, viscous dissipation, and chemical reaction. The flow is subjected to a uniform transverse magnetic field normal to the flow. The governing coupled partial differential equations are converted into a set of non-linear ordinary differential equations (ODE) using similarity analysis. The resultant non-linear coupled ordinary differential equations are solved numerically using the boundary value problem solver (bvp4c) in MATLAB with a convincible accuracy. The effects of the physical parameters such as viscosity parameter ( μ ( T ˜ b ) ) \left({\mu ({{\tilde T}_b})} \right) , permeability parameter (β), magnetic field parameter (M), Local Grashof number (Gr) for thermal diffusion, Local modified Grashof number for mass diffusion (Gm), the Eckert number (Ec), the thermal conductivity parameter ( K ( T ˜ b ) ) \left({K({{\tilde T}_b})} \right) on the velocity, temperature, concentration profiles, skin-friction coefficient, Nusselt number, and Sherwood number are presented graphically. The physical visualization of flow parameters that appeared in the problem is discussed with the help of various graphs to convey the real life application in industrial and engineering processes. A comparison has been made with previously published work and present study revels the good agreement with the published work. This study will be helpful in the clinical healing of pathological situations accompanied by accelerated circulation.


2021 ◽  
Author(s):  
Muhammad Yasir ◽  
Masood Khan ◽  
Awais Ahmed ◽  
Malik Zaka Ullah

Abstract In this work, an analysis is presented for the unsteady axisymmetric flow of Oldroyd-B nanofluid generated by an impermeable stretching cylinder with heat and mass transport under the influence of heat generation/absorption, thermal radiation and first-order chemical reaction. Additionally, thermal and solutal performances of nanofluid are studied using an interpretation of the well-known Buongiorno's model, which helps us to determine the attractive characteristics of Brownian motion and thermophoretic diffusion. Firstly, the governing unsteady boundary layer equation's (PDEs) are established and then converted into highly non-linear ordinary differential equations (ODEs) by using the suitable similarity transformations. For the governing non-linear ordinary differential equations, numerical integration in domain [0, ∞) is carried out using the BVP Midrich scheme in Maple software. For the velocity, temperature and concentration distributions, reliable results are prepared for different physical flow constraints. According to the results, for increasing values of Deborah numbers, the temperature and concentration distribution are higher in terms of relaxation time while these are decline in terms of retardation time. Moreover, thermal radiation and heat generation/absorption are increased the temperature distribution and corresponding boundary layer thickness. With previously stated numerical values, the acquired solutions have an excellent accuracy.


2020 ◽  
Vol 87 (3-4) ◽  
pp. 261
Author(s):  
Ram Prakash Sharma ◽  
N. Indumathi ◽  
S. Saranya ◽  
B. Ganga ◽  
A. K. Abdul Hakeem

In this study a mathematical analysis has been carried out to scrutinize the unsteady boundary layer flow of an incompressible, rarefied gaseous flow over a vertical stretching sheet with velocity slip and thermal jump boundary conditions in the presence of thermal radiation. Using boundary layer approach and suitable similarity transformations, the governing partial differential equations with the boundary conditions are reduced to a system of non-linear ordinary differential equations. The resulting non-linear ordinary differential equations are solved with the help of fourth order Runge-Kutta method with shooting technique. The results obtained for the velocity profile, temperature profile, skin friction coefficient and the reduced Nusselt number are described through graphs. It is predicted that the velocity and temperature profiles are lower for unsteady flow and has an opposite effect for steady flow.


2017 ◽  
Vol 14 (1) ◽  
pp. 321-329
Author(s):  
Abeer A Shaaban

Explicit finite-difference method was used to obtain the solution of the system of the non-linear ordinary differential equations which transform from the non-linear partial differential equations. These equations describe the steady magneto-hydrodynamic flow of an oldroyd 8-constant non-Newtonian nano-fluid through a non-Darcy porous medium with heat and mass transfer. The induced magnetic field was taken into our consideration. The numerical formula of the velocity, the induced magnetic field, the temperature, the concentration, and the nanoparticle concentration distributions of the problem were illustrated graphically. The effect of the material parameters (α1 α2), Darcy number Da, Forchheimer number Fs, Magnetic Pressure number RH, Magnetic Prandtl number Pm, Prandtl number Pr, Radiation parameter Rn, Dufour number Nd, Brownian motion parameter Nb, Thermophoresis parameter Nt, Heat generation Q, Lewis number Le, and Sort number Ld on those formula were discussed specially in the case of pure Coutte flow (U0 = 1, d <inline-formula> <mml:math display="block"> <mml:mrow> <mml:mover accent="true"> <mml:mi>P</mml:mi> <mml:mo stretchy="true">^</mml:mo> </mml:mover> </mml:mrow> </mml:math> </inline-formula> /dx = 0). Also, an estimation of the global error for the numerical values of the solutions is calculated by using Zadunaisky technique.


Sign in / Sign up

Export Citation Format

Share Document