scholarly journals Singularity Avoidance Control of a Non-Holonomic Mobile Manipulator for Intuitive Hand Guidance

Robotics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 14 ◽  
Author(s):  
Matthias Weyrer ◽  
Mathias Brandstötter ◽  
Manfred Husty

Mobile manipulators are robot systems capable of combining logistics and manipulation tasks. They thus fulfill an important prerequisite for the integration into flexible manufacturing systems. Another essential feature required for modern production facilities is a user-friendly and intuitive human-machine interaction. In this work the goal of code-less programming is addressed and an intuitive and safe approach to physically interact with such robot systems is derived. We present a natural approach for hand guiding a sensitive mobile manipulator in task space using a force torque sensor that is mount close to the end effector. The proposed control structure is capable of handling the kinematic redundancies of the system and avoid singular arm configurations by means of haptic feedback to the user. A detailed analysis of all possible singularities of the UR robot family is given and the functionality of the controller design is shown with laboratory experiments on our mobile manipulator.

Author(s):  
Ji-Chul Ryu ◽  
Vivek Sangwan ◽  
Sunil K. Agrawal

This paper presents a methodology for design of mobile vehicles, mounted with underactuated manipulators operating in a horizontal plane, such that the combined system is differentially flat. A challenging question of how to perform point-to-point motions in the state space of such a highly nonlinear system, in spite of the absence of some actuators in the arm, is answered in this paper. We show that, by appropriate inertia distribution of the links and addition of torsion springs at the joints, a range of underactuated designs is possible, where the underactuated mobile manipulator system is differentially flat. The differential flatness property allows one to efficiently solve the problem of trajectory planning and feedback controller design for point-to-point motions in the state space. The proposed method is illustrated by the example of a mobile vehicle with an underactuated three-link manipulator.


2013 ◽  
Vol 65 (1) ◽  
pp. 28-38 ◽  
Author(s):  
Hsiang-Hsi Huang ◽  
Ming-Der May ◽  
Chienwen Wu ◽  
Hsiang-Ming Huang

2021 ◽  
pp. 95-127
Author(s):  
Manuel A. Ruiz Garcia ◽  
Erwin Rauch ◽  
Renato Vidoni ◽  
Dominik T. Matt

AbstractHuman–robot cooperation aims to increase the flexibilization of manufacturing systems. This requires safe human–machine interaction (e.g. with collaborative robots) as well as self and environment awareness capabilities to interact autonomously and smartly between humans and machines. Therefore, the goal of this chapter is to conceptualize and identify the set of real-time information processing and decision-making capabilities required for collaborative robots to be considered as a safe companion in the context of human–robot cooperation (HRC). In particular, the chapter provides an overview of appropriate artificial intelligence (AI) and machine learning (ML) concepts, formally introduces the concept of a safety-aware cyber-physical system and defines a general taxonomy for the perceptive and cognitive problems arising in the context of intelligent and flexible HRC.


2022 ◽  
Vol 12 (1) ◽  
pp. 419
Author(s):  
Ferdinando Vitolo ◽  
Andrea Rega ◽  
Castrese Di Marino ◽  
Agnese Pasquariello ◽  
Alessandro Zanella ◽  
...  

Enabling technologies that drive Industry 4.0 and smart factories are pushing in new equipment and system development also to prevent human workers from repetitive and non-ergonomic tasks inside manufacturing plants. One of these tasks is the order-picking which consists in collecting parts from the warehouse and distributing them among the workstations and vice-versa. That task can be completely performed by a Mobile Manipulator that is composed by an industrial manipulator assembled on a Mobile Robot. Although the Mobile Manipulators implementation brings advantages to industrial applications, they are still not widely used due to the lack of dedicated standards on control and safety. Furthermore, there are few integrated solutions and no specific or reference point allowing the safe integration of mobile robots and cobots (already owned by company). This work faces the integration of a generic mobile robot and collaborative robot selected from an identified set of both systems. The paper presents a safe and flexible mechatronic interface developed by using MBSE principles, multi-domain modeling, and adopting preliminary assumptions on the hardware and software synchronization level of both involved systems. The interface enables the re-using of owned robot systems differently from their native tasks. Furthermore, it provides an additional and redundant safety level by enabling power and force limiting both during cobot positioning and control system faulting.


Sign in / Sign up

Export Citation Format

Share Document