scholarly journals On a Two-DoF Parallel and Orthogonal Variable-Stiffness Actuator: An Innovative Kinematic Architecture

Robotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 39 ◽  
Author(s):  
Matteo Malosio ◽  
Francesco Corbetta ◽  
Francisco Ramìrez Reyes ◽  
Hermes Giberti ◽  
Giovanni Legnani ◽  
...  

Variable-Stiffness Actuators are continuously increasing in importance due to their characteristics that can be beneficial in various applications. It is undisputed that several one-degree-of-freedom (DoF) solutions have been developed thus far. The aim of this work is to introduce an original two-DoF planar variable-stiffness mechanism, characterized by an orthogonal arrangement of the actuation units to favor the isotropy. This device combines the concepts forming the basis of a one-DoF agonist-antagonist variable-stiffness mechanism and the rigid planar parallel and orthogonal kinematic one. In this paper, the kinematics and the operation principles are set out in detail, together with the analysis of the mechanism stiffness.

Author(s):  
Shangkui Yang ◽  
Peng Chen ◽  
Yongzhan Cao ◽  
Shuyun Zhu ◽  
Zhuang Ge ◽  
...  

2011 ◽  
Vol 3 (3) ◽  
Author(s):  
Gianluca Palli ◽  
Giovanni Berselli ◽  
Claudio Melchiorri ◽  
Gabriele Vassura

Variable stiffness actuators can be used in order to achieve a suitable trade-off between performance and safety in robotic devices for physical human–robot interaction. With the aim of improving the compactness and the flexibility of existing mechanical solutions, a variable stiffness actuator based on the use of flexures is investigated. The proposed concept allows the implementation of a desired stiffness profile and range. In particular, this paper reports a procedure for the synthesis of a fully compliant mechanism used as a nonlinear transmission element, together with its experimental characterization. Finally, a preliminary prototype of the overall joint is depicted.


Actuators ◽  
2014 ◽  
Vol 3 (2) ◽  
pp. 20-40 ◽  
Author(s):  
Maarten Weckx ◽  
Glenn Mathijssen ◽  
Idris Si Mhand Benali ◽  
Raphaël Furnemont ◽  
Ronald Van Ham ◽  
...  

2021 ◽  
pp. 1-20
Author(s):  
Ryan Moore ◽  
Joseph Schimmels

Abstract Antagonistically actuated Variable Stiffness Actuators (VSAs) take inspiration from biological muscle structures to control both the stiffness and positioning of a joint. This paper presents the design of an elastic mechanism that utilizes a cable running through a set of three pulleys to displace a linear spring, yielding quadratic spring behavior in each actuator. A joint antagonistically actuated by two such mechanisms yields a linear relationship between force and deflection from a selectable equilibrium position. A quasi-static model is used to optimize the mechanism. Testing of the fabricated prototype yielded a good match to the desired elastic behavior.


2021 ◽  
Vol 8 ◽  
Author(s):  
Simon Lemerle ◽  
Manuel G. Catalano ◽  
Antonio Bicchi ◽  
Giorgio Grioli

Living beings modulate the impedance of their joints to interact proficiently, robustly, and safely with the environment. These observations inspired the design of soft articulated robots with the development of Variable Impedance and Variable Stiffness Actuators. However, designing them remains a challenging task due to their mechanical complexity, encumbrance, and weight, but also due to the different specifications that the wide range of applications requires. For instance, as prostheses or parts of humanoid systems, there is currently a need for multi-degree-of-freedom joints that have abilities similar to those of human articulations. Toward this goal, we propose a new compact and configurable design for a two-degree-of-freedom variable stiffness joint that can match the passive behavior of a human wrist and ankle. Using only three motors, this joint can control its equilibrium orientation around two perpendicular axes and its overall stiffness as a one-dimensional parameter, like the co-contraction of human muscles. The kinematic architecture builds upon a state-of-the-art rigid parallel mechanism with the addition of nonlinear elastic elements to allow the control of the stiffness. The mechanical parameters of the proposed system can be optimized to match desired passive compliant behaviors and to fit various applications (e.g., prosthetic wrists or ankles, artificial wrists, etc.). After describing the joint structure, we detail the kinetostatic analysis to derive the compliant behavior as a function of the design parameters and to prove the variable stiffness ability of the system. Besides, we provide sets of design parameters to match the passive compliance of either a human wrist or ankle. Moreover, to show the versatility of the proposed joint architecture and as guidelines for the future designer, we describe the influence of the main design parameters on the system stiffness characteristic and show the potential of the design for more complex applications.


Author(s):  
Ryan Moore ◽  
Joseph M. Schimmels

Abstract Antagonistically actuated Variable Stiffness Actuators (VSAs) take inspiration from biological muscle structures to control both the stiffness and positioning of a joint. The design presented utilizes a cable running through a set of three pulleys, to displace a linear spring, yielding quadratic spring behavior. A quasi-static model of the mechanism is used to assess and optimize the force-displacement behavior. The mechanism prototype yielded a good match to the desired elastic behavior.


Sign in / Sign up

Export Citation Format

Share Document