Design of a Quadratic, Antagonistic, Cable-Driven, Variable Stiffness Actuator

2021 ◽  
pp. 1-20
Author(s):  
Ryan Moore ◽  
Joseph Schimmels

Abstract Antagonistically actuated Variable Stiffness Actuators (VSAs) take inspiration from biological muscle structures to control both the stiffness and positioning of a joint. This paper presents the design of an elastic mechanism that utilizes a cable running through a set of three pulleys to displace a linear spring, yielding quadratic spring behavior in each actuator. A joint antagonistically actuated by two such mechanisms yields a linear relationship between force and deflection from a selectable equilibrium position. A quasi-static model is used to optimize the mechanism. Testing of the fabricated prototype yielded a good match to the desired elastic behavior.

Author(s):  
Ryan Moore ◽  
Joseph M. Schimmels

Abstract Antagonistically actuated Variable Stiffness Actuators (VSAs) take inspiration from biological muscle structures to control both the stiffness and positioning of a joint. The design presented utilizes a cable running through a set of three pulleys, to displace a linear spring, yielding quadratic spring behavior. A quasi-static model of the mechanism is used to assess and optimize the force-displacement behavior. The mechanism prototype yielded a good match to the desired elastic behavior.


Robotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 39 ◽  
Author(s):  
Matteo Malosio ◽  
Francesco Corbetta ◽  
Francisco Ramìrez Reyes ◽  
Hermes Giberti ◽  
Giovanni Legnani ◽  
...  

Variable-Stiffness Actuators are continuously increasing in importance due to their characteristics that can be beneficial in various applications. It is undisputed that several one-degree-of-freedom (DoF) solutions have been developed thus far. The aim of this work is to introduce an original two-DoF planar variable-stiffness mechanism, characterized by an orthogonal arrangement of the actuation units to favor the isotropy. This device combines the concepts forming the basis of a one-DoF agonist-antagonist variable-stiffness mechanism and the rigid planar parallel and orthogonal kinematic one. In this paper, the kinematics and the operation principles are set out in detail, together with the analysis of the mechanism stiffness.


2011 ◽  
Vol 3 (3) ◽  
Author(s):  
Gianluca Palli ◽  
Giovanni Berselli ◽  
Claudio Melchiorri ◽  
Gabriele Vassura

Variable stiffness actuators can be used in order to achieve a suitable trade-off between performance and safety in robotic devices for physical human–robot interaction. With the aim of improving the compactness and the flexibility of existing mechanical solutions, a variable stiffness actuator based on the use of flexures is investigated. The proposed concept allows the implementation of a desired stiffness profile and range. In particular, this paper reports a procedure for the synthesis of a fully compliant mechanism used as a nonlinear transmission element, together with its experimental characterization. Finally, a preliminary prototype of the overall joint is depicted.


Actuators ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 44 ◽  
Author(s):  
David P. Allen ◽  
Edgar Bolívar ◽  
Sophie Farmer ◽  
Walter Voit ◽  
Robert D. Gregg

Legged and gait-assistance robots can walk more efficiently if their actuators are compliant. The adjustable compliance of variable-stiffness actuators (VSAs) can enhance this benefit. However, this functionality requires additional mechanical components making VSAs impractical for some uses due to increased weight, volume, and cost. VSAs would be more practical if they could modulate the stiffness of their springs without additional components, which usually include moving parts and an additional motor. Therefore, we designed a VSA that uses dielectric elastomer transducers (DETs) for springs. It does not need mechanical stiffness-adjusting components because DETs soften due to electrostatic forces. This paper presents details and performance of our design. Our DET VSA demonstrated independent modulation of its equilibrium position and stiffness. Our design approach could make it practical to obtain the benefits of variable-stiffness actuation with less weight, volume, and cost than normally accompanies them, once weaknesses of DET technology are addressed.


2017 ◽  
Vol 110 ◽  
pp. 85-99 ◽  
Author(s):  
G. Spagnuolo ◽  
M. Malosio ◽  
T. Dinon ◽  
L. Molinari Tosatti ◽  
G. Legnani

2000 ◽  
Author(s):  
Shuguang Huang ◽  
Joseph M. Schimmels

Abstract In this paper, synthesis of an arbitrary elastic behavior with an elastic mechanism is addressed. The mechanisms considered are parallel and serial mechanisms with concurrent axes. We show that any stiffness matrix can be realized through a parallel mechanism with all spring axes intersecting at a unique point. This point is shown to be the center of stiffness. We also show that any compliance matrix can be realized through a serial mechanism with all joint axes intersecting at a unique point. This point is shown to be the center of compliance. Synthesis procedures for mechanisms with these properties are provided.


2019 ◽  
Vol 1 (2) ◽  
pp. 80-97
Author(s):  
Jesus H Lugo

Safe interactions between humans and robots are needed in several industrial processes and service tasks. Compliance design and control of mechanisms is a way to increase safety. This article presents a compliant revolute joint mechanism using a biphasic media variable stiffness actuator. The actuator has a member configured to transmit motion that is connected to a fluidic circuit, into which a biphasic control fluid circulates. Stiffness is controlled by changing pressure of control fluid into distribution lines. A mathematical model of the actuator is presented, a model-based control method is implemented to track the desired position and stiffness, and equations relating to the dynamics of the mechanism are provided. Results from force loaded and unloaded simulations and experiments with a physical prototype are discussed. The additional information covers a detailed description of the system and its physical implementation.


Sign in / Sign up

Export Citation Format

Share Document