stiffness profile
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 263 (4) ◽  
pp. 2609-2616
Author(s):  
Luke Fredette ◽  
Rajendra Singh

Passive vibration isolation may be a cost-effective solution to isolate a supported system containing a source and/or receiver from the supporting structure. The standard linear theory suggests a low-stiffness joint to create a mobility mismatch in the transmission path, but this solution may lead to large amplitude motions in the supported system. To achieve both motion control and isolation with the same mount and without compromising either objective, an innovative, nonlinear mount concept is proposed. Taking advantage of geometric nonlinearity for large displacements, a quasi-zero stiffness is generated by exploiting the interaction between the nonlinear mechanisms that govern the motion of a number of inclined shear legs. For example, a three-regime stiffness profile is created, including a medium-stiffness preload regime, a quasi-zero stiffness isolation regime, and a high-stiffness motion control regime. This concept offers significant benefits compared with a more conventional compromise approach in that low-amplitude vibrations are exceptionally isolated while large amplitude transient motions are controlled. Illustrative computational examples will be presented to support the underlying linear and nonlinear design principles. Limiting cases will be discussed as well.


2020 ◽  
pp. 027836492094327
Author(s):  
Riccardo Mengacci ◽  
Franco Angelini ◽  
Manuel G Catalano ◽  
Giorgio Grioli ◽  
Antonio Bicchi ◽  
...  

This article tackles the problem of controlling articulated soft robots (ASRs), i.e., robots with either fixed or variable elasticity lumped at the joints. Classic control schemes rely on high-authority feedback actions, which have the drawback of altering the desired robot softness. The problem of accurate control of ASRs, without altering their inherent stiffness, is particularly challenging because of their complex and hard-to-model nonlinear dynamics. Leveraging a learned anticipatory action, iterative learning control (ILC) strategies do not suffer from these issues. Recently, ILC was adopted to perform position control of ASRs. However, the limitation of position-based ILC in controlling variable stiffness robots is that whenever the robot stiffness profile is changed, a different input action has to be learned. Our first contribution is to identify a wide class of ASRs, whose motion and stiffness adjusting dynamics can be proved to be decoupled. This class is described by two properties that we define: strong elastic coupling, relative to motors and links of the system and their connections; and homogeneity, relative to the characteristics of the motors. Furthermore, we design a torque-based ILC scheme that, starting from a rough estimation of the system parameters, refines the torque needed for the joint positions tracking. The resulting control scheme requires minimum knowledge of the system. Experiments on variable stiffness robots prove that the method effectively generalizes the iterative procedure with respect to the desired stiffness profile and allows good tracking performance. Finally, potential restrictions of the method, e.g., caused by friction phenomena, are discussed.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Joep P. A. Nijssen ◽  
Ron A. J. van Ostayen

Abstract Deformability of hydrostatic bearings could potentially increase their application range significantly. When a bearing is made compliant, the film pressure starts to influence the deformation of the support itself. This effect, called compliant-hydrostatic pre-loading, is especially crucial to take into account when designing highly deformable hydrostatic bearings. This work introduces the principle of pressure profile matching to minimize the effect of this pre-loading. A two-dimensional design model is introduced to determine the performance of such an elastic bearing utilizing stiffness profile matching. Additionally, an extension to the model is presented to analyze the basic performance of these type of bearings over small counter surface eccentricities. Finally, an embodiment of such a material distribution is presented utilizing functionally graded materials. These embodiments are analyzed with respect to their failure behavior, showing an improved shear stress and strain energy density distribution with the functionally graded supports when compared with conventional elastic supports.


2019 ◽  
Vol 127 (2) ◽  
pp. 520-530
Author(s):  
Stephen P. Allen ◽  
Alena M. Grabowski

When humans hop with a passive-elastic exoskeleton with springs in parallel with both legs, net metabolic power (Pmet) decreases compared with normal hopping (NH). Furthermore, humans retain near-constant total vertical stiffness ( ktot) when hopping with such an exoskeleton. To determine how spring stiffness profile affects Pmet and biomechanics, 10 subjects hopped on both legs normally and with three full-leg exoskeletons that each used a different spring stiffness profile at 2.4, 2.6, 2.8, and 3.0 Hz. Each subject hopped with an exoskeleton that had a degressive spring stiffness (DGexo), where stiffness, the slope of force vs. displacement, is initially high but decreases with greater displacement, linear spring stiffness (LNexo), where stiffness is constant, or progressive spring stiffness (PGexo), where stiffness is initially low but increases with greater displacement. Compared with NH, use of the DGexo, LNexo, and PGexo numerically resulted in 13–24% lower, 4–12% lower, and 0–8% higher Pmet, respectively, at 2.4–3.0 Hz. Hopping with the DGexo reduced Pmet compared with NH at 2.4–2.6 Hz ( P ≤ 0.0457) and reduced Pmet compared with the PGexo at 2.4–2.8 Hz ( P < 0.001). ktot while hopping with each exoskeleton was not different compared with NH, suggesting that humans adjust leg stiffness to maintain overall stiffness regardless of the spring stiffness profile in an exoskeleton. Furthermore, the DGexo provided the greatest elastic energy return, followed by LNexo and PGexo ( P ≤ 0.001). Future full-leg, passive-elastic exoskeleton designs for hopping, and presumably running, should use a DGexo rather than an LNexo or a PGexo to minimize metabolic demand. NEW & NOTEWORTHY When humans hop at 2.4–3.0 Hz normally and with an exoskeleton with different spring stiffness profiles in parallel to the legs, net metabolic power is lowest when hopping with an exoskeleton with degressive spring stiffness. Total vertical stiffness is constant when using an exoskeleton with linear or nonlinear spring stiffness compared with normal hopping. In-parallel spring stiffness influences net metabolic power and biomechanics and should be considered when designing passive-elastic exoskeletons for hopping and running.


2019 ◽  
Vol 30 (6) ◽  
pp. 844-854 ◽  
Author(s):  
D Nalini ◽  
K Dhanalakshmi

The structural composition of two elastic elements, shape memory alloy wire (active actuating element) and spring (the passive bias), offers variable stiffness actuation. Based on this principle, a variable stiffness linear actuator is conceptually designed and developed. It is electromechanical by nature, that is, it is electrically activated and creates translational/linear motion. The variable stiffness linear actuator engages shape memory alloy wire(s) along with a passive compression spring to work synergistically. The biasing element offers recovery force to the shape memory alloy wire as well as compliance to the whole structure. The synergistic configuration exhibits an aiding force, thereby allowing an actuation with large displacement and a wide range of stiffness. The actuator mechanism is implemented through parallel action and further proposes two different modes of operation: pull mode (i.e. the disc moving along a fixed shaft) and push mode (i.e. linear reciprocating motion of the pushrod). The shape memory alloy configured actuator mechanism is analysed theoretically; the working model of the variable stiffness linear actuator is developed and investigated experimentally. The results apprise that the variable stiffness linear actuator is capable of offering large displacement and in reproducing the stiffness profile for active compliance control applications.


2018 ◽  
Author(s):  
Abdel-Rahman Hassan ◽  
Thomas Biel ◽  
Taeyoon Kim

ABSTRACTCell migration is a fundamental process in biological systems, playing an important role for diverse physiological processes. Cells often exhibit directed migration in a specific direction in response to various types of cues. In particular, cells are able to sense the rigidity of surrounding environments and then migrate towards stiffer regions. To understand this mechanosensitive behavior called durotaxis, several computational models have been developed. However, most of the models made phenomenological assumptions to recapitulate durotactic behaviors, significantly limiting insights provided from these studies. In this study, we developed a computational biomechanical model without any phenomenological assumption to illuminate intrinsic mechanisms of durotactic behaviors of cells migrating on a two-dimensional substrate. The model consists of a simplified cell generating contractile forces and a deformable substrate coarse-grained into an irregular triangulated mesh. Using the model, we demonstrated that durotactic behaviors emerge from purely mechanical interactions between the cell and the underlying substrate. We investigated how durotactic migration is regulated by biophysical properties of the substrate, including elasticity, viscosity, and stiffness profile.


2017 ◽  
Vol 37 (1) ◽  
pp. 155-167 ◽  
Author(s):  
Arash Ajoudani ◽  
Cheng Fang ◽  
Nikos Tsagarakis ◽  
Antonio Bicchi

In this paper, a reduced-complexity model of the human arm endpoint stiffness is introduced and experimentally evaluated for the teleimpedance control of a compliant robotic arm. The modeling of the human arm endpoint stiffness behavior is inspired by human motor control principles on the predominant use of the arm configuration in directional adjustments of the endpoint stiffness profile, and the synergistic effect of muscular activations, which contributes to a coordinated modification of the task stiffness in all Cartesian directions. Calibration and identification of the model parameters are carried out experimentally, using perturbation-based arm endpoint stiffness measurements in different arm configurations and cocontraction levels of the chosen muscles. Consequently, the real-time model is used for the remote control of a compliant robotic arm while executing a drilling task, a representative example of tool use in environments with constraints and dynamic uncertainties. The results of this study illustrate that the proposed model enables the master to execute the remote task by modulation of the directions of the major axes of the endpoint stiffness ellipsoid and its volume using natural arm configurations and the cocontraction of the involved muscles, respectively.


Author(s):  
Yutong Xia ◽  
Hongbin Fang ◽  
K. W. Wang

Origami-inspired mechanical metamaterials could exhibit extraordinary properties that originate almost exclusively from the intrinsic geometry of the constituent folds. While most of current state of the art efforts have focused on the origami’s static and quasi-static scenarios, this research explores the dynamic characteristics of degree-4 vertex (4-vertex) origami folding. Here we characterize the mechanics and dynamics of two 4-vertex origami structures, one is a stacked Miura-ori (SMO) structure with structural bistability, and the other is a stacked single-collinear origami (SSCO) structure with locking-induced stiffness jump; they are the constituent units of the corresponding origami metamaterials. In this research, we theoretically model and numerically analyze their dynamic responses under harmonic base excitations. For the SMO structure, we use a third-order polynomial to approximate the bistable stiffness profile, and numerical simulations reveal rich phenomena including small-amplitude intrawell, large-amplitude interwell, and chaotic oscillations. Spectrum analyses reveal that the quadratic and cubic nonlinearities dominate the intrawell oscillations and interwell oscillations, respectively. For the SSCO structure, we use a piecewise constant function to describe the stiffness jump, which gives rise to a frequency-amplitude response with hardening nonlinearity characteristics. Mainly two types of oscillations are observed, one with small amplitude that coincides with the linear scenario because locking is not triggered, and the other with large amplitude and significant nonlinear characteristics. The method of averaging is adopted to analytically predict the piecewise stiffness dynamics. Overall, this research bridges the gap between the origami quasi-static mechanics and origami folding dynamics, and paves the way for further dynamic applications of origami-based structures and metamaterials.


2017 ◽  
Author(s):  
Varun Vyas ◽  
Melani Solomon ◽  
Gerard G. M. D’Souza ◽  
Bryan D. Huey

AbstractThe nanomechanical properties of various biological and cellular surfaces are increasingly investigated with Scanning Probe Microscopy. Surface stiffness measurements are currently being used to define metastatic properties of various cancerous cell lines and other related biological tissues. Here we present a unique methodology to understand depth dependent nanomechanical variations in stiffness in biopolymers and live cells. In this study we have used A2780 & NIH3T3 cell lines and 0.5% & 1% Agarose to investigate depth dependent stiffness and porosity on nanomechanical properties in different biological systems. This analytical methodology can circumvent the issue associated with the contribution of substrates on cell stiffness. Here we demonstrate that by calculating ‘continuous-step-wise-modulus’ on force vs. distance curves one can observe minute variation as function of depth. Due to the presence of different kinds of cytoskeletal filament, dissipation of contact force might vary from one portion of a cell to another. On NIH3T3 cell lines, stiffness profile of Circular Dorsal Ruffles could be observed in form of large parabolic feature with changes in stiffness at different depth. In biopolymers like agarose, depending upon the extent of polymerization in there can be increase or decrease in stiffness due variations in pore size and extent to which crosslinking is taking place at different depths. 0.5% agarose showed gradual decrease in stiffness whereas with 1% agarose there was slight increase in stiffness as one indents deeper into its surface.


Author(s):  
Joep P. A. Nijssen ◽  
Giuseppe Radaelli ◽  
Just L. Herder ◽  
Charles J. Kim ◽  
J. B. Ring

In this paper a first iteration of a new scoliosis brace design and correction strategy is presented using compliant shell mechanisms to create both motion and correction. The motion profile of the human spine was found using a segmented motion capture approach. The brace was designed for a case study using a conceptual ellipsoid design approach. The force controlled correction profile was re-invented using a two fold zero and positive stiffness profile. These force generators were built and validated to prove their zero stiffness characteristic. The kinematic part of the brace was detail designed with the correct order of magnitude and validated through their force-deflection characteristic. The end result was a first iteration of a new brace validated and analysed on some critical components which can form the basis for a future biomechanical study.


Sign in / Sign up

Export Citation Format

Share Document