scholarly journals Extracting Building Boundaries from High Resolution Optical Images and LiDAR Data by Integrating the Convolutional Neural Network and the Active Contour Model

2018 ◽  
Vol 10 (9) ◽  
pp. 1459 ◽  
Author(s):  
Ying Sun ◽  
Xinchang Zhang ◽  
Xiaoyang Zhao ◽  
Qinchuan Xin

Identifying and extracting building boundaries from remote sensing data has been one of the hot topics in photogrammetry for decades. The active contour model (ACM) is a robust segmentation method that has been widely used in building boundary extraction, but which often results in biased building boundary extraction due to tree and background mixtures. Although the classification methods can improve this efficiently by separating buildings from other objects, there are often ineluctable salt and pepper artifacts. In this paper, we combine the robust classification convolutional neural networks (CNN) and ACM to overcome the current limitations in algorithms for building boundary extraction. We conduct two types of experiments: the first integrates ACM into the CNN construction progress, whereas the second starts building footprint detection with a CNN and then uses ACM for post processing. Three level assessments conducted demonstrate that the proposed methods could efficiently extract building boundaries in five test scenes from two datasets. The achieved mean accuracies in terms of the F1 score for the first type (and the second type) of the experiment are 96.43 ± 3.34% (95.68 ± 3.22%), 88.60 ± 3.99% (89.06 ± 3.96%), and 91.62 ±1.61% (91.47 ± 2.58%) at the scene, object, and pixel levels, respectively. The combined CNN and ACM solutions were shown to be effective at extracting building boundaries from high-resolution optical images and LiDAR data.

2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Hamed Habibi Aghdam ◽  
Domenec Puig ◽  
Agusti Solanas

The extraction of the breast boundary is crucial to perform further analysis of mammogram. Methods to extract the breast boundary can be classified into two categories: methods based on image processing techniques and those based on models. The former use image transformation techniques such as thresholding, morphological operations, and region growing. In the second category, the boundary is extracted using more advanced techniques, such as the active contour model. The problem with thresholding methods is that it is a hard to automatically find the optimal threshold value by using histogram information. On the other hand, active contour models require defining a starting point close to the actual boundary to be able to successfully extract the boundary. In this paper, we propose a probabilistic approach to address the aforementioned problems. In our approach we use local binary patterns to describe the texture around each pixel. In addition, the smoothness of the boundary is handled by using a new probability model. Experimental results show that the proposed method reaches 38% and 50% improvement with respect to the results obtained by the active contour model and threshold-based methods respectively, and it increases the stability of the boundary extraction process up to 86%.


Sign in / Sign up

Export Citation Format

Share Document