scholarly journals An Efficient Representation-Based Subspace Clustering Framework for Polarized Hyperspectral Images

2019 ◽  
Vol 11 (13) ◽  
pp. 1513 ◽  
Author(s):  
Chen ◽  
Zhang ◽  
Mu ◽  
Yan ◽  
Chen ◽  
...  

Recently, representation-based subspace clustering algorithms for hyperspectral images (HSIs) have been developed with the assumption that pixels belonging to the same land-cover class lie in the same subspace. Polarization is regarded to be a complement to spectral information, but related research only focus on the clustering for HSIs without considering polarization, and cannot effectively process large-scale hyperspectral datasets. In this paper, we propose an efficient representation-based subspace clustering framework for polarized hyperspectral images (PHSIs). Combining with spectral information and polarized information, this framework is extensible for most existing representation-based subspace clustering algorithms. In addition, with a sampling-clustering-classification strategy which firstly clusters selected in-sample data into several classes and then matches the out-of-sample data into these classes by collaborative representation-based classification, the proposed framework significantly reduces the computational complexity of clustering algorithms for PHSIs. Some experiments were carried out to demonstrate the accuracy, efficiency and potential capabilities of the algorithms under the proposed framework.

Author(s):  
Pierre O. Jacquet ◽  
Farid Pazhoohi ◽  
Charles Findling ◽  
Hugo Mell ◽  
Coralie Chevallier ◽  
...  

AbstractWhy do moral religions exist? An influential psychological explanation is that religious beliefs in supernatural punishment is cultural group adaptation enhancing prosocial attitudes and thereby large-scale cooperation. An alternative explanation is that religiosity is an individual strategy that results from high level of mistrust and the need for individuals to control others’ behaviors through moralizing. Existing evidence is mixed but most works are limited by sample size and generalizability issues. The present study overcomes these limitations by applying k-fold cross-validation on multivariate modeling of data from >295,000 individuals in 108 countries of the World Values Surveys and the European Value Study. First, this methodology reveals no evidence that European and non-European religious people invest more in collective actions and are more trustful of unrelated conspecifics. Instead, the individuals’ level of religiosity is found to be weakly but positively associated with social mistrust and negatively associated with the production of behaviors, which benefit unrelated members of the large-scale community. Second, our models show that individual variation in religiosity is well explained by the interaction of increased levels of social mistrust and increased needs to moralize other people’s sexual behaviors. Finally, stratified k-fold cross-validation demonstrates that the structures of these association patterns are robust to sampling variability and reliable enough to generalize to out-of-sample data.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zhao Kang ◽  
Chong Peng ◽  
Jie Cheng ◽  
Qiang Cheng

Low-rank matrix is desired in many machine learning and computer vision problems. Most of the recent studies use the nuclear norm as a convex surrogate of the rank operator. However, all singular values are simply added together by the nuclear norm, and thus the rank may not be well approximated in practical problems. In this paper, we propose using a log-determinant (LogDet) function as a smooth and closer, though nonconvex, approximation to rank for obtaining a low-rank representation in subspace clustering. Augmented Lagrange multipliers strategy is applied to iteratively optimize the LogDet-based nonconvex objective function on potentially large-scale data. By making use of the angular information of principal directions of the resultant low-rank representation, an affinity graph matrix is constructed for spectral clustering. Experimental results on motion segmentation and face clustering data demonstrate that the proposed method often outperforms state-of-the-art subspace clustering algorithms.


2020 ◽  
Vol 12 (5) ◽  
pp. 775 ◽  
Author(s):  
Shaoguang Huang ◽  
Hongyan Zhang ◽  
Qian Du ◽  
Aleksandra Pižurica

Sparse subspace clustering (SSC) techniques provide the state-of-the-art in clustering of hyperspectral images (HSIs). However, their computational complexity hinders their applicability to large-scale HSIs. In this paper, we propose a large-scale SSC-based method, which can effectively process large HSIs while also achieving improved clustering accuracy compared to the current SSC methods. We build our approach based on an emerging concept of sketched subspace clustering, which was to our knowledge not explored at all in hyperspectral imaging yet. Moreover, there are only scarce results on any large-scale SSC approaches for HSI. We show that a direct application of sketched SSC does not provide a satisfactory performance on HSIs but it does provide an excellent basis for an effective and elegant method that we build by extending this approach with a spatial prior and deriving the corresponding solver. In particular, a random matrix constructed by the Johnson-Lindenstrauss transform is first used to sketch the self-representation dictionary as a compact dictionary, which significantly reduces the number of sparse coefficients to be solved, thereby reducing the overall complexity. In order to alleviate the effect of noise and within-class spectral variations of HSIs, we employ a total variation constraint on the coefficient matrix, which accounts for the spatial dependencies among the neighbouring pixels. We derive an efficient solver for the resulting optimization problem, and we theoretically prove its convergence property under mild conditions. The experimental results on real HSIs show a notable improvement in comparison with the traditional SSC-based methods and the state-of-the-art methods for clustering of large-scale images.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bilal Elghadyry ◽  
Faissal Ouardi ◽  
Sébastien Verel

AbstractWeighted finite-state transducers have been shown to be a general and efficient representation in many applications such as text and speech processing, computational biology, and machine learning. The composition of weighted finite-state transducers constitutes a fundamental and common operation between these applications. The NP-hardness of the composition computation problem presents a challenge that leads us to devise efficient algorithms on a large scale when considering more than two transducers. This paper describes a parallel computation of weighted finite transducers composition in MapReduce framework. To the best of our knowledge, this paper is the first to tackle this task using MapReduce methods. First, we analyze the communication cost of this problem using Afrati et al. model. Then, we propose three MapReduce methods based respectively on input alphabet mapping, state mapping, and hybrid mapping. Finally, intensive experiments on a wide range of weighted finite-state transducers are conducted to compare the proposed methods and show their efficiency for large-scale data.


Author(s):  
Annalisa Appice ◽  
Angelo Cannarile ◽  
Antonella Falini ◽  
Donato Malerba ◽  
Francesca Mazzia ◽  
...  

AbstractSaliency detection mimics the natural visual attention mechanism that identifies an imagery region to be salient when it attracts visual attention more than the background. This image analysis task covers many important applications in several fields such as military science, ocean research, resources exploration, disaster and land-use monitoring tasks. Despite hundreds of models have been proposed for saliency detection in colour images, there is still a large room for improving saliency detection performances in hyperspectral imaging analysis. In the present study, an ensemble learning methodology for saliency detection in hyperspectral imagery datasets is presented. It enhances saliency assignments yielded through a robust colour-based technique with new saliency information extracted by taking advantage of the abundance of spectral information on multiple hyperspectral images. The experiments performed with the proposed methodology provide encouraging results, also compared to several competitors.


2014 ◽  
Vol 09 (02) ◽  
pp. 1440001 ◽  
Author(s):  
MARC S. PAOLELLA

Simple, fast methods for modeling the portfolio distribution corresponding to a non-elliptical, leptokurtic, asymmetric, and conditionally heteroskedastic set of asset returns are entertained. Portfolio optimization via simulation is demonstrated, and its benefits are discussed. An augmented mixture of normals model is shown to be superior to both standard (no short selling) Markowitz and the equally weighted portfolio in terms of out of sample returns and Sharpe ratio performance.


Sign in / Sign up

Export Citation Format

Share Document