Journal of Intelligent Information Systems
Latest Publications


TOTAL DOCUMENTS

855
(FIVE YEARS 146)

H-INDEX

40
(FIVE YEARS 5)

Published By Springer-Verlag

1573-7675, 0925-9902

Author(s):  
Rupsa Saha ◽  
Ole-Christoffer Granmo ◽  
Vladimir I. Zadorozhny ◽  
Morten Goodwin

AbstractTsetlin machines (TMs) are a pattern recognition approach that uses finite state machines for learning and propositional logic to represent patterns. In addition to being natively interpretable, they have provided competitive accuracy for various tasks. In this paper, we increase the computing power of TMs by proposing a first-order logic-based framework with Herbrand semantics. The resulting TM is relational and can take advantage of logical structures appearing in natural language, to learn rules that represent how actions and consequences are related in the real world. The outcome is a logic program of Horn clauses, bringing in a structured view of unstructured data. In closed-domain question-answering, the first-order representation produces 10 × more compact KBs, along with an increase in answering accuracy from 94.83% to 99.48%. The approach is further robust towards erroneous, missing, and superfluous information, distilling the aspects of a text that are important for real-world understanding


Author(s):  
Summaya Mumtaz ◽  
Martin Giese

AbstractIn low-resource domains, it is challenging to achieve good performance using existing machine learning methods due to a lack of training data and mixed data types (numeric and categorical). In particular, categorical variables with high cardinality pose a challenge to machine learning tasks such as classification and regression because training requires sufficiently many data points for the possible values of each variable. Since interpolation is not possible, nothing can be learned for values not seen in the training set. This paper presents a method that uses prior knowledge of the application domain to support machine learning in cases with insufficient data. We propose to address this challenge by using embeddings for categorical variables that are based on an explicit representation of domain knowledge (KR), namely a hierarchy of concepts. Our approach is to 1. define a semantic similarity measure between categories, based on the hierarchy—we propose a purely hierarchy-based measure, but other similarity measures from the literature can be used—and 2. use that similarity measure to define a modified one-hot encoding. We propose two embedding schemes for single-valued and multi-valued categorical data. We perform experiments on three different use cases. We first compare existing similarity approaches with our approach on a word pair similarity use case. This is followed by creating word embeddings using different similarity approaches. A comparison with existing methods such as Google, Word2Vec and GloVe embeddings on several benchmarks shows better performance on concept categorisation tasks when using knowledge-based embeddings. The third use case uses a medical dataset to compare the performance of semantic-based embeddings and standard binary encodings. Significant improvement in performance of the downstream classification tasks is achieved by using semantic information.


Author(s):  
Magdalena Biesialska ◽  
Katarzyna Biesialska ◽  
Henryk Rybinski

AbstractPeople express their opinions and views in different and often ambiguous ways, hence the meaning of their words is often not explicitly stated and frequently depends on the context. Therefore, it is difficult for machines to process and understand the information conveyed in human languages. This work addresses the problem of sentiment analysis (SA). We propose a simple yet comprehensive method which uses contextual embeddings and a self-attention mechanism to detect and classify sentiment. We perform experiments on reviews from different domains, as well as on languages from three different language families, including morphologically rich Polish and German. We show that our approach is on a par with state-of-the-art models or even outperforms them in several cases. Our work also demonstrates the superiority of models leveraging contextual embeddings. In sum, in this paper we make a step towards building a universal, multilingual sentiment classifier.


Author(s):  
Zhihai Yang ◽  
Qindong Sun ◽  
Zhaoli Liu ◽  
Jinpei Yan ◽  
Yaling Zhang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document