scholarly journals On the Segmentation of the Cephalonia–Lefkada Transform Fault Zone (Greece) from an InSAR Multi-Mode Dataset of the Lefkada 2015 Sequence

2019 ◽  
Vol 11 (16) ◽  
pp. 1848
Author(s):  
Nikos Svigkas ◽  
Simone Atzori ◽  
Anastasia Kiratzi ◽  
Cristiano Tolomei ◽  
Andrea Antonioli ◽  
...  

We use Interferometric Synthetic Aperture Radar (InSAR) to study the Cephalonia–Lefkada Transform Fault Zone (CTF) in the Ionian Sea. The CTF separates continental subduction to the north from oceanic subduction to the south, along the Hellenic Subduction Zone. We exploit a rich multi-modal radar dataset of the most recent major earthquake in the region, the 17 November 2015 Mw 6.4 event, and present new surface displacement results that offer additional constraints on the fault segmentation of the area. Based on this dataset, and by exploiting available information of earthquake relocation, we propose a new rupture process for the 2015 sequence, complementary to those published already. Our modelling includes an additional southern fault segment, oblique to the segment related with the mainshock, which indicates that the CTF structure is more complex than previously believed.

The Verna Fracture Zone in the North Atlantic (9 to 11° N), which has been identified as a transform fault zone, contains exposures of serpentinized peridotites, while its adjacent ridge segments are floored mainly by typical abyssal ocean ridge basalts. This petrologic contrast correlates with the greater frequency of volcanic eruptions along the actively spreading ridge segments compared to the transform fault zone. Where rifting components occur across transform faults, exposures of the deeper zone of oceanic crust may result. The bathymetry of the Verna Fracture Zone suggests that some uplift parallel to the fracture zone as well as rifting led to exposures of deeper rocks. The basalts from the adjacent ridge axes contain ‘xenocrysts’ of plagioclase and olivine and more rarely of chromite. These appear to have a cognate origin, perhaps related to cooling and convection in near surface magma chambers. The basalts from the ridge axes, offset and on opposite sides of the transform fault, have similar features and compositions. The plagioclase peridotites have mineralogical features which indicate equilibration in the plagioclase pyrolite facies, suggesting maximum equilibration depths of around 30 km for a temperature of around 1200 °C. The chemical characteristics of the Vema F.Z. peridotites suggest that they may be undifferentiated mantle, emplaced as a subsolidus hot plastic intrusion or as a crystal mush. The abundance of peridotites and serpentinized peridotites is believed to reflect their abundance in seismic layer three of the oceanic crust.


2020 ◽  
Author(s):  
Sylvie Leroy ◽  
Vincent Roche ◽  
François Guillocheau ◽  
Pierre Dietrich ◽  
Sidonie Revillon ◽  
...  

<p>Transform continental margins known across the Earth represent 31% of passive margins. Resulting from first-order plate tectonic processes, transform margins record a diachronous evolution mainly defined by three successive stages, including intra-continental transform faulting, active and passive transform margin. Due to their high complexity and a lack of large hydrocarbon discoveries (i.e. not a target for oil industry), they have only been sparsely studied, especially when compared with other margin types (i.e. divergent or convergent).</p><p>                  We present the structure and evolution of the NS-trending Limpopo Transform Fault Zone (LTFZ), corresponding to the main fracture zone from western part of the Africa-Antarctica Corridor (AAC). Here, we combine published and unpublished dataset (seismic reflection profiles, wells, multibeam bathymetry, gravity, magnetic data) in order to propose an interpretation of the LTFZ structure and adjoining segments and their evolution through time, from rifting to spreading.</p><p>The LTFZ is composed of two main segments: the East Limpopo segment and the Astrid conjugate one and the North and South Natal segment including the Dana-Galathea Plateau (Mozambique side) and the Maud rise/east of Grunehogna craton (Antarctica margin). The LTFZ offsets the segments of divergent conjugate margins (Southern Natal-off Grunehogna craton in the west and Beira High Angoche-Riiser Larsen Sea in the east) since 155 Ma (chron M25). We focus on the evolution of the transform fault zone from its initiation at chron M25 up to chron M0 (~126 Ma, Barremian). Oceanic spreading onset at chron M25 in the south of Beira High segment and Dana-Galathea Plateau triggered the uplift and erosion of the proximal parts of the margin and the formation of several seaward dipping reflectors wedges. Plate kinematic implies an NNW-SSE opening of the LTFZ. The oblique component of opening promotes the setting up of several volcanic wedges. These wedges rejuvenate southward trough time, which is consistent with the sliding of Antarctica with respect to Africa and thus confirm the diachronous evolution of the transform fault zone.</p>


2015 ◽  
Vol 63 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Vassilios Karakostas ◽  
Eleftheria Papadimitriou ◽  
Maria Mesimeri ◽  
Charikleia Gkarlaouni ◽  
Parthena Paradisopoulou

1996 ◽  
Vol 23 (8) ◽  
pp. 873-876 ◽  
Author(s):  
R. P. Dziak ◽  
C. G. Fox ◽  
R. W. Embley ◽  
J. E. Lupton ◽  
G. C. Johnson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document