transform faults
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 80)

H-INDEX

40
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Huifang Xu ◽  
Kuang-Sheng Hong ◽  
Meiye Wu ◽  
Seungyeol Lee

ABSTRACT A high concentration of hydrogen gas occurs in fracture zones of active faults that are associated with historical earthquakes. To explain the described phenomenon, we propose the piezoelectrochemical (PZEC) effect as a mechanism for the direct conversion of mechanical energy to chemical energy. When applied to natural piezoelectric crystals including quartz and serpentine, hydrogen and oxygen are generated via direct water decomposition. Laboratory experiments show H2 gas is generated from strained piezoelectric material due to the extremely low solubility of H2, suggesting that the deformed or strained mineral surfaces can catalyze water decomposition. If the strain-induced H2 production is significant, hydrogen measurements at monitoring sites can offer information on deformation of rocks operating at depth prior to earthquakes. Oxygen can be measured in water due to its high solubility compared to hydrogen. Our experimental results demonstrate that dissolved oxygen generated from the PZEC effect can oxidize dissolved organic dye and ferrous iron in an aqueous Fe(II)–silicate metal complex. The hydrogen and oxygen formed through stoichiometric decomposition of water in the presence of strained or deformed minerals in fault zones (including subduction zones and transform faults) may be referred to as tectonic hydrogen and tectonic oxygen. Tectonic hydrogen could be a potential energy source for deep subsurface and glacier-bedrock interface microbial communities that rely on molecular hydrogen for metabolism. Tectonic oxygen may have been an important oxidizing agent when dissolved in water during times in early Earth history when atmospheric oxygen levels were extremely low. Reported “whiffs” of dissolved oxygen before the Great Oxidation Event might have been related to tectonic activity.


2021 ◽  
pp. SP524-2021-119
Author(s):  
E. R. Lundin ◽  
A. G. Doré ◽  
J. Naliboff ◽  
J. Van Wijk

AbstractReactivation of continental transform faults (hereafter; transforms) is identified herein as a significant factor in continental break-up, based on a global review of divergent margins and numerical modelling. Divergent margins that have reactivated transforms are characterized by linear and abrupt terminations of thick continental crust. Transforms represent some of the largest structures on Earth, and these megastructures represent major lithospheric weaknesses and are therefore prone to reactivation upon changes in the stress field, which typically occur during plate break-up. The blunt termination of the margins is consistent with observations of very limited pre-breakup lithospheric thinning of such margins. This mode of break-up appears to occur abruptly, and contrasts notably with highly tapered and slowly extended divergent margins. Magma leakage along transforms is well-known worldwide where divergence occurs across such features. This leakage may evolve to dike injections, further reducing the plate strength. We observe that many of the blunt margins we attribute to transform reactivation have been prone to above-normal magmatism and are marked by seaward dipping reflectors underlain by high-velocity lower crustal intrusions. The magmatism may be directly related to the separation of abruptly terminated margins, whereby the large resulting lateral thermal gradients trigger edge-driven convection and melt addition.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5756724


Geology ◽  
2021 ◽  
Author(s):  
Pengcheng Shi ◽  
Meng (Matt) Wei ◽  
Robert A. Pockalny

Oceanic transform faults are a significant component of the global plate boundary system and are well known for generating fewer and smaller earthquakes than expected. Detailed studies at a handful of sites support the hypothesis that an abundance of creeping segments is responsible for most of the observed deficiency of earthquakes on those faults. We test this hypothesis on a global scale. We relocate Mw ⩾5 earthquakes on 138 oceanic transform faults around the world and identify creeping segments on these faults. We demonstrate that creeping segments occur on almost all oceanic transform faults, which could explain their deficiency of earthquakes. We also find that most of the creeping segments are not associated with any large-scale geological structure such as a fault step-over, indicating that along-strike variation of fault zone properties may be the main reason for their existence.


2021 ◽  
Author(s):  
Pengcheng Shi ◽  
et al.

Additional information regarding the methods and data, and complete creeping segment fraction results on each oceanic transform fault.<br>


2021 ◽  
Author(s):  
Pengcheng Shi ◽  
et al.

Additional information regarding the methods and data, and complete creeping segment fraction results on each oceanic transform fault.<br>


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 6) ◽  
Author(s):  
A. Hazra ◽  
A. Saha ◽  
A. Verencar ◽  
M. Satyanarayanan ◽  
S. Ganguly ◽  
...  

Abstract The phenomena of reactive percolation of enriched asthenospheric melts and pervasive melt-rock interactions at mid oceanic ridge-rift systems are the principal proponents for mantle refertilization and compositional heterogeneity. This study presents new mineralogical and geochemical data for the abyssal peridotites exposed along the Vema and Vityaz fracture zones of the Central Indian Ridge (CIR) to address factors contributing to the chemical heterogeneity of CIR mantle. Cr-spinel (Cr#: 0.37-0.59) chemistry classifies these rocks as alpine-type peridotites and corroborates a transitional depleted MORB type to enriched, SSZ-related arc-type magma composition. HFSE and REE geochemistry further attests to an enriched intraoceanic forearc mantle affinity. The distinct boninitic signature of these rocks reflected by LREE&gt;MREE&lt;HREE and PGE compositions substantiates refertilization of the CIR mantle harzburgites by boninitic melt percolation concomitant to initiation of oceanic subduction. The mineral chemistry, trace, and PGE signatures of the CIR peridotites envisage (i) replenishment of depleted sub-ridge upper mantle by impregnation of subduction-derived boninitic melts, (ii) tectonic transition from mid oceanic ridge-rift to an embryonic suprasubduction zone, and (iii) initiation of spontaneous intraoceanic subduction along submarine transform faults and fracture zones of slow-spreading CIR owing to the weakness and mechanical instability of older, denser, and negatively buoyant Indian Ocean lithosphere.


2021 ◽  
Vol 18 (4) ◽  
pp. 463-481
Author(s):  
Elkhedr Ibrahim ◽  
Mohamed Arfaoui ◽  
Saad Mogren ◽  
Saleh Qaysi ◽  
Aref Lashin ◽  
...  

Abstract This study presents the disposition of magmatic eruptions with a fault distribution in northwestern Saudi Arabia, where intensive magma invades the lithosphere. Structural and magmatic features are traced at successive depths through high-resolution magnetic anomaly pseudo-depth slices. The total horizontal gradient technique is applied to pseudo-depth slice magnetic anomalies to enhance the linear trends of faults and related magmatic activity. A comprehensive cross-section constructed from the projection of gradient horizontal maxima relative to pseudo-slices allows the visualization of the vertical behavior of faults and magma sources. Three major fault systems were identified, primarily aligned in the N–S, NE–SW and NW–SE directions. They are characterized by increasing length and width with depth. The N-S fault system is a major non-planar deep system throughout the area, affected by the NW–SE and NE–SW deep discontinuities. The evolution of these discontinuities with depth successfully shows magma uprising zones represented by a circular horizontal gradient, which starts to appear at a depth of 4500 m with a vertical continuity to the surface. They are interpreted as possible locations of ascending magma chambers or vents. The disposition of these magma sources with fault distribution can show a close relationship between the fault systems and the magma eruptions. The interpreted magma vents appear where the NE-trending transform faults intersect the NW or N–S fault zone. These intersections may represent weak zones that act as vertical conduits through which magma discontinuously erupts into the overlying crust, forming major volcanic fields in the eastern Red Sea.


Author(s):  
Alan P. Dykes ◽  
Edward N. Bromhead

The Southwell Topple is a spectacular example of a toppling failure on the southeastern coastline of the Isle of Portland, on the south coast of England. Types of mass movements, which occur around almost the entire coastline of Portland and include some other much smaller but well-known topples, vary depending on local geological and topographic contexts. The ‘Southwell Landslide’ of 1734 (i.e. the Southwell Topple), differs in most respects from all the others, not least in its size. We examine the historical and geological contexts of the Southwell Topple in order to explain its origins and characteristics. The recently published bathymetric data from the DORIS project reveals the tectonic context for the landslide, particularly the frequent transform faults parallel to the southeastern coastline of Portland and the axis of the Shambles Syncline forming Portland's ‘central depression’. It appears that the Southwell Topple resulted from coast-parallel tectonic discontinuities – probably a single joint and/or transform fault – through the Portland Stone combined with preferential marine erosion of the underlying weaker Portland Sand.


Sign in / Sign up

Export Citation Format

Share Document