transform margin
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 23)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
pp. SP524-2021-88
Author(s):  
D. A. Paton ◽  
E. M. Mortimer ◽  
P. Markwick ◽  
J. Khan ◽  
A. Davids ◽  
...  

AbstractThe Diaz Marginal Ridge (DMR), on the southern transform margin of South Africa, is a bathymetric feature parallel to the Agulhas Falkland Fracture Zone (AFFZ) that has long been considered an archetype marginal ridge; and yet its origin and evolution remains unconstrained. Using recently acquired seismic data we present a new structural interpretation of the DMR and its association with the evolution of both the AFFZ and the Southern Outeniqua Basin. In contrast to previous scenarios invoking thermo-mechanical explanations for its evolution, we observe a more straightforward structural model in which the genesis of the DMR results from the structural inversion of a Jurassic rift basin. This inversion resulted in the progressive onlap of latest Valanginian-Hauterivian aged stratigraphic units, important for the formation of stratigraphic plays of the recent Brulpadda discovery.Paradoxically, this contraction is contemporaneous with renewed extension observed in the inboard normal faults. The orientation of the DMR and inboard structures have been demonstrated to be controlled by the underlying Cape Fold Belt (CFB) fabric. The onset of motion across the AFFZ shear system led to east-west orientated maximum stress and north-south orientated minimum stress. We propose this stress re-orientation resulted in strain partitioning across existing structures whereby in addition to strike-slip on the AFFZ there was coeval extension and contraction, the nature of which was determined by fault orientation. The fault orientation in turn was controlled by a change in orientation of the underlying CFB. Our model provides new insights into the interplay of changes in regional stress orientation with basement fabric and localised magmatism along an evolving transform. The application of horizontal strain partitioning can provide an explanation of similar features observed on other transform margins.


2021 ◽  
pp. SP524-2021-110
Author(s):  
Michal Nemčok ◽  
Lucia Ledvényiova ◽  
Andreas Henk ◽  
Samuel Rybár ◽  
Sudipta T. Sinha ◽  
...  

AbstractA comparison of transform margins that started their evolution as continental transforms shows differences in their tectonic style, which can be attributed to the variable kinematic adjustments they underwent during the post-breakup continental-oceanic stage of their development. Three end-member examples are presented in detail. The Cape Range transform fault zone (Western Australia) retained its strike-slip character during its entire continental-oceanic stage, as documented by the transform-perpendicular system of spreading-related magnetic stripe anomalies. The Coromandal transform fault zone (Eastern India) adjusted its kinematics to a transtensional one during its continental-oceanic stage, as indicated by the transform-oblique system of magnetic stripe anomalies and extensional component of movement indicated by a narrow zone of crustal thinning. The Romanche transform fault zone (Equatorial Africa) adjusted its kinematics to transpressional, as documented by the changing geometries of magnetic stripe anomalies and transpressional folding during its continental-oceanic development stage. Based on the recognition of the aforementioned adjustments, we suggest a new categorization of transforms into (1) those that experience transpressional adjustment, (2) those that experience transtensional adjustment and (3) those that do not experience any adjustment during their continental-oceanic development stage.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5762388


2021 ◽  
Vol 9 ◽  
Author(s):  
Sébastien Rohais ◽  
Julien Bailleul ◽  
Sandra Brocheray ◽  
Julien Schmitz ◽  
Paolo Paron ◽  
...  

Intraslope lobes, or perched lobes, are attracting scientific interest because they represent a key archive between the shelf and the deep basin plain when looking at a complete source-to-sink depositional system across a continental margin and can form significant offshore hydrocarbon plays. In this study, we focus on a detailed characterization of intraslope lobes of the Motta San Giovanni Formation (Miocene, Calabria), which were deposited in confined conditions during the Miocene along a transform margin. We determine the typical facies associations and stratigraphic architecture of these intraslope lobes using a 3D digital outcrop model resulting from a combined Uncrewed Aerial Vehicle (UAV) and walking acquisition, together with sedimentological logging and geological mapping. We propose recognition criteria for the identification of intraslope lobes, including facies and geometries, integrated within a depositional model. A comparison with other well-known intraslope and confined lobes, as well as basin floor lobes, is finally discussed, to highlight the peculiarities of intraslope lobes deposited along transform margins. The diagnostic depositional model for these types of intraslope lobes includes four main stages of evolution: 1) Stage 1—isolated detached lobe precursor in response to a flushed hydraulic jump, 2) Stage 2—prograding and aggrading lobe elements associated with a relatively stable and submerged hydraulic jump in the Channel-Lobe Transition Zone (CLTZ), 3) Stage 3—major bypass associated with lateral accretion and local aggradation interpreted as a renewal of a normal hydraulic jump in the CTLZ, and 4) Stage 4—erosion and bypass then abandonment. The development of intraslope lobes along active transform margins is allowed by tectonically induced slope segmentation and local confinement. In such a context, flow stripping and overspill processes occurred. Resulting lobes appear to be particularly small and relatively thin sandy deposits. They could be considered end-member in a lobe classification based on the Net-to-Gross content (high) and taking into account their thickness/width ratio (intermediate between 10:1 and 100:1 lines).


Tectonics ◽  
2021 ◽  
Author(s):  
L. Watremez ◽  
S. Leroy ◽  
E. d’Acremont ◽  
V. Roche ◽  
M. Evain ◽  
...  

Tectonics ◽  
2021 ◽  
Author(s):  
V. Roche ◽  
S. Leroy ◽  
F. Guillocheau ◽  
S. Revillon ◽  
G. Ruffet ◽  
...  
Keyword(s):  

2021 ◽  
Vol 19 (2) ◽  
pp. 12-21
Author(s):  
J. Clark Gilbert ◽  
Zane R. Jobe ◽  
Samuel A. Johnstone ◽  
Glenn R. Sharman ◽  
Howard Harper

The San Gabriel and Canton faults represent early stages in the development of the San Andreas fault system. However, questions of timing of initiation and magnitude of slip on these structures remain unresolved, with published estimates ranging from 42–75 km and likely starting in the Miocene. This uncertainty in slip history reflects an absence of appropriate piercing points. We attempt to better constrain the slip history on these faults by quantifying the changing proportions of source terranes contributing sediment to the Ventura Basin, California, through the Cenozoic, including refining data for a key piercing point. Ventura Basin sediments show an increase in detrital zircon U-Pb dates and mineral abundances associated with crystalline sources in the northern San Gabriel Mountains through time, which we interpret to record the northwest translation of the basin. by dextral strike-slip faulting. In particular, an Oligocene unit mapped as part of the extra-regional Sespe Formation instead has greater affinity to the Vasquez Formation. Specifically, the presence of a unimodal population of approximately 1180 Ma zircon, high (57%) plagioclase content, and proximal alluvial fan facies indicate that the basin was adjacent to the San Gabriel anorthosite during deposition of the Vasquez Formation, requiring 35 to 60 km of slip on the San Gabriel-Canton fault system. Mixture modeling of detrital zircon data supported by automated mineralogy highlights the importance of this piercing point along the San Gabriel-Canton fault system and suggests that fault slip began during the late Oligocene to early Miocene, which is earlier than published models. These two lines of evidence disagree with recent models that estimate greater than 60 km of offset, requiring a reappraisal of the slip history of an early strand of the San Andreas transform zone.


Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 193
Author(s):  
Daniel W. Schmid ◽  
Karthik Iyer ◽  
Ebbe H. Hartz

Continental breakup along transform margins produces a sequence of (1) continent-continent, (2) continent-oceanic, (3) continent-ridge, and (4) continent-oceanic juxtapositions. Spreading ridges are the main sources of heat, which is then distributed by diffusion and advection. Previous work focused on the thermal evolution of transform margins built on 2D numerical models. Here we use a 3D FEM model to obtain the first order evolution of temperature, uplift/subsidence, and thermal maturity of potential source rocks. Snapshots for all four transform phases are provided by 2D sections across the margin. Our 3D approach yields thermal values that lie in between the previously established 2D end-member models. Additionally, the 3D model shows heat transfer into the continental lithosphere across the transform margin during the continental-continental transform stage ignored in previous studies. The largest values for all investigated quantities in the continental area are found along the transform segment between the two ridges, with the maximum values occurring near the transform-ridge corner of the trailing continental edge. This boundary segment records the maximum thermal effect up to 100 km distance from the transform. We also compare the impact of spreading rates on the thermal distribution within the lithosphere. The extent of the perturbation into the continental areas is reduced in the faster models due to the reduced exposure times. The overall pattern is similar and the maximum values next to the transform margin is essentially unchanged. Varying material properties in the upper crust of the continental areas has only a minor influence.


2021 ◽  
Author(s):  
Frauke Klingelhoefer ◽  
Youssef Biari ◽  
Dieter Franke ◽  
Thomas Funck ◽  
Lies Loncke ◽  
...  

<p>In order to study opening mechanisms and their variation in the Atlantic ocean basins, we compiled existing wide-angle and deep seismic data along conjugate margins and performed plate tectonic reconstructions of the original opening geometries to define conjugate margin pairs. A total of 23 published wide-angle seismic profiles from the different margins of the Atlantic basin were digitized, and reconstructions at break-up and during early stages of opening were performed. Main objectives were to understand how magma-rich and magma-poor margins develop and to define more precisely the role of geologic inheritance (i.e., preexisting structures) in the break-up phase. At magma-poor margins, a phase of tectonic opening without accretion of a typical oceanic crust often follows initial rupture, leading to exhumation of serpentinized upper mantle material. Along volcanic margins the first oceanic crust can be overthickened, and both over- and underlain by volcanic products. The first proto-oceanic crust is often accreted at slow to very slow rates, and is thus of varied thickness, mantle content and volcanic overprint. Accretion of oceanic crust at slow to very slow spreading rates can also be highly asymmetric, so the proto oceanic crust at each side of conjugate margin pairs can differ. Another major aim of this study was to understand the mechanisms of formation and origins of transform marginal plateaus. These are bathymetric highs located at the border of two ocean basins of different ages and are mostly characterized by one or several volcanic phase during their formation. They often form conjugate pairs along a transform margin as it evolves and might have been the last land bridges during breakup, thereby influencing mammal migration and proto-oceanic currents in very young basins. At these plateaus, volcanic eruptions can lead to deposits of (at least in part subaerial) lava flows several km thick, better known by their geophysical signature as seaward dipping reflectors. Continental crust, if present, is heavily modified by volcanic intrusions. These marginal plateaus might form when rifting stops at barriers introduced by the transform margin, leading to the accumulation of heat in the mantle and increased volcanism directly before or after the cessation of rifting.</p>


2021 ◽  
Vol 40 (3) ◽  
pp. 28-40
Author(s):  
K.N. Dobroshevsky ◽  
◽  
N.A. Goryachev ◽  
◽  

An interpretation of the first obtained Re-Os dating of pyrite and arsenopyrite of the Malinovsky gold ore deposit is given. A comparison of the obtained data and the known dates of the ore-bearing granitoids of the ore field made it possible to determine the age of mineralization at 100-90 Ma. This age corresponds to the time of completion of the Alb-Cenomanian transform margin of Asia continent geodynamic setting with significant left-shear kinematics, as indicated in the article by the structural features of the localization of ore bodies and magmatic bodies. The distribution of gold ore deposits in this time within the Sikhote-Alin orogenic belt and in the shear structures of the south of the Korean Peninsula are noticeably shown.


Sign in / Sign up

Export Citation Format

Share Document