scholarly journals A hybrid OSVM-OCNN Method for Crop Classification from Fine Spatial Resolution Remotely Sensed Imagery

2019 ◽  
Vol 11 (20) ◽  
pp. 2370 ◽  
Author(s):  
Li ◽  
Zhang ◽  
Zhang ◽  
Atkinson

Accurate information on crop distribution is of great importance for a range of applications including crop yield estimation, greenhouse gas emission measurement and management policy formulation. Fine spatial resolution (FSR) remotely sensed imagery provides new opportunities for crop mapping at a detailed level. However, crop classification from FSR imagery is known to be challenging due to the great intra-class variability and low inter-class disparity in the data. In this research, a novel hybrid method (OSVM-OCNN) was proposed for crop classification from FSR imagery, which combines a shallow-structured object-based support vector machine (OSVM) with a deep-structured object-based convolutional neural network (OCNN). Unlike pixel-wise classification methods, the OSVM-OCNN method operates on objects as the basic units of analysis and, thus, classifies remotely sensed images at the object level. The proposed OSVM-OCNN harvests the complementary characteristics of the two sub-models, the OSVM with effective extraction of low-level within-object features and the OCNN with capture and utilization of high-level between-object information. By using a rule-based fusion strategy based primarily on the OCNN’s prediction probability, the two sub-models were fused in a concise and effective manner. We investigated the effectiveness of the proposed method over two test sites (i.e., S1 and S2) that have distinctive and heterogeneous patterns of different crops in the Sacramento Valley, California, using FSR Synthetic Aperture Radar (SAR) and FSR multispectral data, respectively. Experimental results illustrated that the new proposed OSVM-OCNN approach increased markedly the classification accuracy for most of crop types in S1 and all crop types in S2, and it consistently achieved the most accurate accuracy in comparison with its two object-based sub-models (OSVM and OCNN) as well as the pixel-wise SVM (PSVM) and CNN (PCNN) methods. Our findings, thus, suggest that the proposed method is as an effective and efficient approach to solve the challenging problem of crop classification using FSR imagery (including from different remotely sensed platforms). More importantly, the OSVM-OCNN method is readily generalisable to other landscape classes and, thus, should provide a general solution to solve the complex FSR image classification problem.

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1290
Author(s):  
Benjamin T. Fraser ◽  
Russell G. Congalton

Remotely sensed imagery has been used to support forest ecology and management for decades. In modern times, the propagation of high-spatial-resolution image analysis techniques and automated workflows have further strengthened this synergy, leading to the inquiry into more complex, local-scale, ecosystem characteristics. To appropriately inform decisions in forestry ecology and management, the most reliable and efficient methods should be adopted. For this reason, our research compares visual interpretation to digital (automated) processing for forest plot composition and individual tree identification. During this investigation, we qualitatively and quantitatively evaluated the process of classifying species groups within complex, mixed-species forests in New England. This analysis included a comparison of three high-resolution remotely sensed imagery sources: Google Earth, National Agriculture Imagery Program (NAIP) imagery, and unmanned aerial system (UAS) imagery. We discovered that, although the level of detail afforded by the UAS imagery spatial resolution (3.02 cm average pixel size) improved the visual interpretation results (7.87–9.59%), the highest thematic accuracy was still only 54.44% for the generalized composition groups. Our qualitative analysis of the uncertainty for visually interpreting different composition classes revealed the persistence of mislabeled hardwood compositions (including an early successional class) and an inability to consistently differentiate between ‘pure’ and ‘mixed’ stands. The results of digitally classifying the same forest compositions produced a higher level of accuracy for both detecting individual trees (93.9%) and labeling them (59.62–70.48%) using machine learning algorithms including classification and regression trees, random forest, and support vector machines. These results indicate that digital, automated, classification produced an increase in overall accuracy of 16.04% over visual interpretation for generalized forest composition classes. Other studies, which incorporate multitemporal, multispectral, or data fusion approaches provide evidence for further widening this gap. Further refinement of the methods for individual tree detection, delineation, and classification should be developed for structurally and compositionally complex forests to supplement the critical deficiency in local-scale forest information around the world.


Sign in / Sign up

Export Citation Format

Share Document