scholarly journals Reliable and Efficient UAV Image Matching via Geometric Constraints Structured by Delaunay Triangulation

2020 ◽  
Vol 12 (20) ◽  
pp. 3390
Author(s):  
San Jiang ◽  
Wanshou Jiang ◽  
Lelin Li ◽  
Lizhe Wang ◽  
Wei Huang

Outlier removal is a crucial step in local feature-based unmanned aerial vehicle (UAV) image matching. Inspired by our previous work, this paper proposes a method for reliable and efficient outlier removal in UAV image matching. The inputs of the method are only two images without any other auxiliary data. The core idea is to design local geometric constraints within the neighboring structure via the Delaunay triangulation and use a two-stage method for outlier removal and match refinement. In the filter stage, initial matches are first organized as the Delaunay triangulation (DT) and its corresponding graph, and their dissimilarity scores are computed from the affine-invariant spatial angular order (SAO), which is used to achieve hierarchical outlier removal. In addition, by using the triangle constraint between the refined Delaunay triangulation and its corresponding graph, missed inliers are resumed from match expansion. In the verification stage, retained matches are refined using the RANSAC-based global geometric constraint. Therefore, the two-stage algorithm is termed DTSAO-RANSAC. Finally, using four datasets, DTSAO-RANSAC is comprehensively analyzed and compared with other methods in feature matching and image orientation tests. The experimental results demonstrate that compared with the LO-RANSAC algorithm, DTSAO-RANSAC can achieve efficient outlier removal with speedup ratios ranging from 4 to 16 and, it can provide reliable matching results for image orientation of UAV datasets.

Author(s):  
T. Koch ◽  
X. Zhuo ◽  
P. Reinartz ◽  
F. Fraundorfer

This paper investigates the performance of SIFT-based image matching regarding large differences in image scaling and rotation, as this is usually the case when trying to match images captured from UAVs and airplanes. This task represents an essential step for image registration and 3d-reconstruction applications. Various real world examples presented in this paper show that SIFT, as well as A-SIFT perform poorly or even fail in this matching scenario. Even if the scale difference in the images is known and eliminated beforehand, the matching performance suffers from too few feature point detections, ambiguous feature point orientations and rejection of many correct matches when applying the ratio-test afterwards. Therefore, a new feature matching method is provided that overcomes these problems and offers thousands of matches by a novel feature point detection strategy, applying a one-to-many matching scheme and substitute the ratio-test by adding geometric constraints to achieve geometric correct matches at repetitive image regions. This method is designed for matching almost nadir-directed images with low scene depth, as this is typical in UAV and aerial image matching scenarios. We tested the proposed method on different real world image pairs. While standard SIFT failed for most of the datasets, plenty of geometrical correct matches could be found using our approach. Comparing the estimated fundamental matrices and homographies with ground-truth solutions, mean errors of few pixels can be achieved.


Author(s):  
T. Koch ◽  
X. Zhuo ◽  
P. Reinartz ◽  
F. Fraundorfer

This paper investigates the performance of SIFT-based image matching regarding large differences in image scaling and rotation, as this is usually the case when trying to match images captured from UAVs and airplanes. This task represents an essential step for image registration and 3d-reconstruction applications. Various real world examples presented in this paper show that SIFT, as well as A-SIFT perform poorly or even fail in this matching scenario. Even if the scale difference in the images is known and eliminated beforehand, the matching performance suffers from too few feature point detections, ambiguous feature point orientations and rejection of many correct matches when applying the ratio-test afterwards. Therefore, a new feature matching method is provided that overcomes these problems and offers thousands of matches by a novel feature point detection strategy, applying a one-to-many matching scheme and substitute the ratio-test by adding geometric constraints to achieve geometric correct matches at repetitive image regions. This method is designed for matching almost nadir-directed images with low scene depth, as this is typical in UAV and aerial image matching scenarios. We tested the proposed method on different real world image pairs. While standard SIFT failed for most of the datasets, plenty of geometrical correct matches could be found using our approach. Comparing the estimated fundamental matrices and homographies with ground-truth solutions, mean errors of few pixels can be achieved.


2013 ◽  
Vol 32 (11) ◽  
pp. 3157-3160
Author(s):  
Zhen-hua XUE ◽  
Ping WANG ◽  
Chu-han ZHANG ◽  
Si-jia CAI

2012 ◽  
Vol 220-223 ◽  
pp. 1356-1361
Author(s):  
Xi Jie Tian ◽  
Jing Yu ◽  
Chang Chun Li

In this paper, the idea identify the hook on investment casting shell line based on machine vision has been proposed. According to the characteristic of the hook, we do the image acquisition and preprocessing, we adopt Hough transform to narrow the target range, and find the target area based on the method combining the level projection and vertical projection, use feature matching method SIFT to do the image matching. Finally, we get the space information of the target area of the hook.


2021 ◽  
Vol 5 (4) ◽  
pp. 783-793
Author(s):  
Muhammad Muttabi Hudaya ◽  
Siti Saadah ◽  
Hendy Irawan

needs a solid validation that has verification and matching uploaded images. To solve this problem, this paper implementing a detection model using Faster R-CNN and a matching method using ORB (Oriented FAST and Rotated BRIEF) and KNN-BFM (K-Nearest Neighbor Brute Force Matcher). The goal of the implementations is to reach both an 80% mark of accuracy and prove matching using ORB only can be a replaced OCR technique. The implementation accuracy results in the detection model reach mAP (Mean Average Precision) of 94%. But, the matching process only achieves an accuracy of 43,46%. The matching process using only image feature matching underperforms the previous OCR technique but improves processing time from 4510ms to 60m). Image matching accuracy has proven to increase by using a high-quality dan high quantity dataset, extracting features on the important area of EKTP card images.


2016 ◽  
Vol 12 (12) ◽  
pp. 155014771668082
Author(s):  
Fanhuai Shi ◽  
Jian Gao ◽  
Xixia Huang

Visual sensor networks have emerged as an important class of sensor-based distributed intelligent systems, where image matching is one of the key technologies. This article presents an affine invariant method to produce dense correspondences between uncalibrated wide baseline images. Under affine transformations, both point location and its neighborhood texture are changed between views, so dense matching becomes a tough task. The proposed approach tends to solve this problem within a sparse-to-dense framework. The contribution of this article is in threefolds. First, a strategy of reliable sparse matching is proposed, which starts from affine invariant features extraction and matching and then these initial matches are utilized as spatial prior to produce more sparse matches. Second, match propagation from sparse feature points to its neighboring pixels is conducted in the way of region growing in an affine invariant framework. Third, the unmatched points are handled by low-rank matrix recovery technique. Comparison experiments of the proposed method versus existing ones show a significant improvement in the presence of large affine deformations.


Automatic image registration (IR) is very challenging and very important in the field of hyperspectral remote sensing data. Efficient autonomous IR method is needed with high precision, fast, and robust. A key operation of IR is to align the multiple images in single co-ordinate system for extracting and identifying variation between images considered. In this paper, presented a feature descriptor by combining features from both Feature from Accelerated Segment Test (FAST) and Binary Robust Invariant Scalable Key point (BRISK). The proposed hybrid invariant local features (HILF) descriptor extract useful and similar feature sets from reference and source images. The feature matching method allows finding precise relationship or matching among two feature sets. An experimental analysis described the outcome BRISK, FASK and proposed HILF in terms of inliers ratio and repeatability evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document