distributed intelligent systems
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Francisco José Aguayo-Canela ◽  
Héctor Alaiz-Moretón ◽  
María Teresa García-Ordás ◽  
José Alberto Benítez-Andrades ◽  
Carmen Benavides ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1437
Author(s):  
Valentina Guleva ◽  
Egor Shikov ◽  
Klavdiya Bochenina ◽  
Sergey Kovalchuk ◽  
Alexander Alodjants ◽  
...  

Distributed intelligent systems (DIS) appear where natural intelligence agents (humans) and artificial intelligence agents (algorithms) interact, exchanging data and decisions and learning how to evolve toward a better quality of solutions. The networked dynamics of distributed natural and artificial intelligence agents leads to emerging complexity different from the ones observed before. In this study, we review and systematize different approaches in the distributed intelligence field, including the quantum domain. A definition and mathematical model of DIS (as a new class of systems) and its components, including a general model of DIS dynamics, are introduced. In particular, the suggested new model of DIS contains both natural (humans) and artificial (computer programs, chatbots, etc.) intelligence agents, which take into account their interactions and communications. We present the case study of domain-oriented DIS based on different agents’ classes and show that DIS dynamics shows complexity effects observed in other well-studied complex systems. We examine our model by means of the platform of personal self-adaptive educational assistants (avatars), especially designed in our University. Avatars interact with each other and with their owners. Our experiment allows finding an answer to the vital question: How quickly will DIS adapt to owners’ preferences so that they are satisfied? We introduce and examine in detail learning time as a function of network topology. We have shown that DIS has an intrinsic source of complexity that needs to be addressed while developing predictable and trustworthy systems of natural and artificial intelligence agents. Remarkably, our research and findings promoted the improvement of the educational process at our university in the presence of COVID-19 pandemic conditions.


Author(s):  
Benjamin Kuipers

This chapter describes a computational view of the function of ethics in human society and discusses its application to three diverse examples. First, autonomous vehicles are individually embodied intelligent systems that act as members of society. The ethical knowledge needed by such an agent is not how to choose the lesser evil when confronted by a Deadly Dilemma, but how to recognize the upstream decision point that makes it possible to avoid the Deadly Dilemma entirely. Second, disembodied distributed intelligent systems like Google and Facebook provide valuable services while collecting, aggregating, and correlating vast amounts of information about individual users. With inadequate controls, these corporate systems can invade privacy and do substantial damage through either correct or incorrect inferences. Third, acceptance of the legitimacy of the society by its individual members depends on a general perception of fairness. Rage about unfairness can be directed at individual free-riders or at systematic inequality across the society. Ultimately, the promise of a computational approach to ethical knowledge is not simply ethics for computational devices such as robots. It also promises to help people understand the pragmatic value of ethics as a feedback mechanism that helps intelligent creatures, human and nonhuman, live together in thriving societies.


Information ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 363 ◽  
Author(s):  
Davide Calvaresi ◽  
Jean-Paul Calbimonte ◽  
Alevtina Dubovitskaya ◽  
Valerio Mattioli ◽  
Jean-Gabriel Piguet ◽  
...  

The agent based approach is a well established methodology to model distributed intelligent systems. Multi-Agent Systems (MAS) are increasingly employed in applications dealing with safety and information critical tasks (e.g., in eHealth, financial, and energy domains). Therefore, transparency and the trustworthiness of the agents and their behaviors must be enforced. For example, employing reputation based mechanisms can promote the development of trust. Nevertheless, besides recent early stage studies, the existing methods and systems are still unable to guarantee the desired accountability and transparency adequately. In line with the recent trends, we advocate that combining blockchain technology (BCT) and MAS can achieve the distribution of the trust, removing the need for trusted third parties (TTP), potential single points of failure. This paper elaborates on the notions of trust, BCT, MAS, and their integration. Furthermore, to attain a trusted environment, this manuscript details the design and implementation of a system reconciling MAS (based on the Java Agent DEvelopment Framework (JADE)) and BTC (based on Hyperledger Fabric). In particular, the agents’ interactions, computation, tracking the reputation, and possible policies for disagreement-management are implemented via smart contracts and stored on an immutable distributed ledger. The results obtained by the presented system and similar solutions are also discussed. Finally, ethical implications (i.e., opportunities and challenges) are elaborated before concluding the paper.


Robotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 25
Author(s):  
Arturs Ardavs ◽  
Mara Pudane ◽  
Egons Lavendelis ◽  
Agris Nikitenko

This paper proposes a long-term adaptive distributed intelligent systems model which combines an organization theory and multi-agent paradigm—ViaBots. Currently, the need for adaptivity in autonomous intelligent systems becomes crucial due to the increase in the complexity and diversity of the tasks that autonomous robots are employed for. To deal with the design complexity of such systems within the ViaBots model, each part of the modeled system is designed as an autonomous agent and the entire model, as a multi-agent system. Based on the viable system model, which is widely used to ensure viability, (i.e., long-term autonomy of organizations), the ViaBots model defines the necessary roles a system must fulfill to be capable to adapt both to changes in its environment (like changes in the task) and changes within the system itself (like availability of a particular robot). Along with static role assignments, ViaBots propose a mechanism for role transition from one agent to another as one of the key elements of long term adaptivity. The model has been validated in a simulated environment using an example of a conveyor system. The simulated model enabled the multi-robot system to adapt to the quantity and characteristics of the available robots, as well as to the changes in the parts to be processed by the system.


2016 ◽  
Vol 12 (12) ◽  
pp. 155014771668082
Author(s):  
Fanhuai Shi ◽  
Jian Gao ◽  
Xixia Huang

Visual sensor networks have emerged as an important class of sensor-based distributed intelligent systems, where image matching is one of the key technologies. This article presents an affine invariant method to produce dense correspondences between uncalibrated wide baseline images. Under affine transformations, both point location and its neighborhood texture are changed between views, so dense matching becomes a tough task. The proposed approach tends to solve this problem within a sparse-to-dense framework. The contribution of this article is in threefolds. First, a strategy of reliable sparse matching is proposed, which starts from affine invariant features extraction and matching and then these initial matches are utilized as spatial prior to produce more sparse matches. Second, match propagation from sparse feature points to its neighboring pixels is conducted in the way of region growing in an affine invariant framework. Third, the unmatched points are handled by low-rank matrix recovery technique. Comparison experiments of the proposed method versus existing ones show a significant improvement in the presence of large affine deformations.


Sign in / Sign up

Export Citation Format

Share Document