scholarly journals Investigating the Effects of a Combined Spatial and Spectral Dimensionality Reduction Approach for Aerial Hyperspectral Target Detection Applications

2021 ◽  
Vol 13 (9) ◽  
pp. 1647
Author(s):  
Fraser Macfarlane ◽  
Paul Murray ◽  
Stephen Marshall ◽  
Henry White

Target detection and classification is an important application of hyperspectral imaging in remote sensing. A wide range of algorithms for target detection in hyperspectral images have been developed in the last few decades. Given the nature of hyperspectral images, they exhibit large quantities of redundant information and are therefore compressible. Dimensionality reduction is an effective means of both compressing and denoising data. Although spectral dimensionality reduction is prevalent in hyperspectral target detection applications, the spatial redundancy of a scene is rarely exploited. By applying simple spatial masking techniques as a preprocessing step to disregard pixels of definite disinterest, the subsequent spectral dimensionality reduction process is simpler, less costly and more informative. This paper proposes a processing pipeline to compress hyperspectral images both spatially and spectrally before applying target detection algorithms to the resultant scene. The combination of several different spectral dimensionality reduction methods and target detection algorithms, within the proposed pipeline, are evaluated. We find that the Adaptive Cosine Estimator produces an improved F1 score and Matthews Correlation Coefficient when compared to unprocessed data. We also show that by using the proposed pipeline the data can be compressed by over 90% and target detection performance is maintained.

Author(s):  
Alireza Vafaei Sadr ◽  
Bruce A. Bassett ◽  
M. Kunz

AbstractAnomaly detection is challenging, especially for large datasets in high dimensions. Here, we explore a general anomaly detection framework based on dimensionality reduction and unsupervised clustering. DRAMA is released as a general python package that implements the general framework with a wide range of built-in options. This approach identifies the primary prototypes in the data with anomalies detected by their large distances from the prototypes, either in the latent space or in the original, high-dimensional space. DRAMA is tested on a wide variety of simulated and real datasets, in up to 3000 dimensions, and is found to be robust and highly competitive with commonly used anomaly detection algorithms, especially in high dimensions. The flexibility of the DRAMA framework allows for significant optimization once some examples of anomalies are available, making it ideal for online anomaly detection, active learning, and highly unbalanced datasets. Besides, DRAMA naturally provides clustering of outliers for subsequent analysis.


2010 ◽  
Vol 31 (12) ◽  
pp. 1720-1727 ◽  
Author(s):  
Michał Lewandowski ◽  
Dimitrios Makris ◽  
Jean-Christophe Nebel

2017 ◽  
Vol 29 (5) ◽  
pp. 1352-1374 ◽  
Author(s):  
Xiaowei Zhao ◽  
Feiping Nie ◽  
Sen Wang ◽  
Jun Guo ◽  
Pengfei Xu ◽  
...  

In recent years, unsupervised two-dimensional (2D) dimensionality reduction methods for unlabeled large-scale data have made progress. However, performance of these degrades when the learning of similarity matrix is at the beginning of the dimensionality reduction process. A similarity matrix is used to reveal the underlying geometry structure of data in unsupervised dimensionality reduction methods. Because of noise data, it is difficult to learn the optimal similarity matrix. In this letter, we propose a new dimensionality reduction model for 2D image matrices: unsupervised 2D dimensionality reduction with adaptive structure learning (DRASL). Instead of using a predetermined similarity matrix to characterize the underlying geometry structure of the original 2D image space, our proposed approach involves the learning of a similarity matrix in the procedure of dimensionality reduction. To realize a desirable neighbors assignment after dimensionality reduction, we add a constraint to our model such that there are exact [Formula: see text] connected components in the final subspace. To accomplish these goals, we propose a unified objective function to integrate dimensionality reduction, the learning of the similarity matrix, and the adaptive learning of neighbors assignment into it. An iterative optimization algorithm is proposed to solve the objective function. We compare the proposed method with several 2D unsupervised dimensionality methods. K-means is used to evaluate the clustering performance. We conduct extensive experiments on Coil20, AT&T, FERET, USPS, and Yale data sets to verify the effectiveness of our proposed method.


Author(s):  
S. Sharifi hashjin ◽  
A. Darvishi ◽  
S. Khazai ◽  
F. Hatami ◽  
M. Jafari houtki

In recent years, developing target detection algorithms has received growing interest in hyperspectral images. In comparison to the classification field, few studies have been done on dimension reduction or band selection for target detection in hyperspectral images. This study presents a simple method to remove bad bands from the images in a supervised manner for sub-pixel target detection. The proposed method is based on comparing field and laboratory spectra of the target of interest for detecting bad bands. For evaluation, the target detection blind test dataset is used in this study. Experimental results show that the proposed method can improve efficiency of the two well-known target detection methods, ACE and CEM.


2013 ◽  
Vol 63 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Manoj Arora ◽  
Shweta Bansal ◽  
Sangeeta Khare ◽  
Kiran Chauhan

Sign in / Sign up

Export Citation Format

Share Document