scholarly journals Integrated Laser Scanner Techniques to Produce High-Resolution DTM of Vegetated Territory

2021 ◽  
Vol 13 (13) ◽  
pp. 2504
Author(s):  
Federica Marotta ◽  
Simone Teruggi ◽  
Cristiana Achille ◽  
Giorgio Paolo Maria Vassena ◽  
Francesco Fassi

The paper presents the first part of a research project concerning the creation of 3D terrain models useful to understand landslide movements. Thus, it illustrates the creation process of a multi-source high-resolution Digital Terrain Model (DTM) in very dense vegetated areas obtained by integrating 3D data coming from three sources, starting from long and medium-range Terrestrial Laser Scanner up to a Backpack Indoor Mobile Mapping System. The point clouds are georeferenced by means of RKT GNSS points and automatically filtered using a Cloth Simulation Filter algorithm to separate points belonging to the ground. Those points are interpolated to produce the DTMs which are then mosaicked to obtain a unique multi-resolution DTM that plays a crucial role in the detection and identification of specific geological features otherwise visible. Standard deviation of residuals of the DTM varies from 0.105 m to 0.176 m for Z coordinate, from 0.065 m to 0.300 m for X and from 0.034 m to 0.175 m for Y. The area under investigation belongs to the Municipality of Piuro (SO) and includes both the town and surrounding valley. It was affected by a dramatic landslide in 1618 that destroyed the entire village. Numerous challenges have been faced, caused both by the characteristics of the area and the processed data. The complexity of the case study turns out to be an excellent test bench for the employed technologies, providing the opportunity to precisely identify the needed direction to obtain future promising results.

2020 ◽  
Vol 9 (4) ◽  
pp. 248
Author(s):  
Krzysztof Bakuła ◽  
Magdalena Pilarska ◽  
Adam Salach ◽  
Zdzisław Kurczyński

This paper presents a methodology for levee damage detection based on Unmanned Aerial System (UAS) data. In this experiment, the data were acquired from the UAS platform, which was equipped with a laser scanner and a digital RGB (Red, Green, Blue) camera. Airborne laser scanning (ALS) point clouds were used for the generation of the Digital Terrain Model (DTM), and images were used to produce the RGB orthophoto. The main aim of the paper was to present a methodology based on ALS and vegetation index from RGB orthophoto which helps in finding potential places of levee failure. Both types of multi-temporal data collected from the UAS platform are applied separately: elevation and optical data. Two DTM models from different time periods were compared: the first one was generated from the ALS point cloud and the second DTM was delivered from the UAS Laser Scanning (ULS) data. Archival and new orthophotos were converted to Green-Red Vegetation Index (GRVI) raster datasets. From the GRVI raster, change detection for unvegetation ground areas was analysed using a dynamically indicated threshold. The result of this approach is the localisation of places, for which the change in height correlates with the appearance of unvegetation ground. This simple, automatic method provides a tool for specialist monitoring of levees, the critical objects protecting against floods.


2011 ◽  
Vol 3 (5) ◽  
pp. 845-858 ◽  
Author(s):  
Kande R.M.U. Bandara ◽  
Lal Samarakoon ◽  
Rajendra P. Shrestha ◽  
Yoshikazu Kamiya

Author(s):  
Maxim A. Altyntsev ◽  
◽  
Hamid Majid Saber Karkokli ◽  

The result of laser scanning is an array of laser points. The generation of a single point cloud in a given coordinate system is carried out during the registration process at the stage of preliminary field data processing. At this stage it is also often necessary to filter the data. Laser points with an erroneous position are eliminated during the data filleting. The number of erroneous laser points is determined by the of the laser scanner characteristics, surveyed area peculiarities and weather conditions. The devel-opment of methods and algorithms for filtering laser scanning data is carried out based on the analysis of the laser point spatial position and a certain set of additional characteristics, such as intensity value, echo signal, color value. The technique of mobile laser scanning data filtering for the territory of the road passing among the forest and close to individual industrial facilities and building. The main goal of the proposed filtration technique is to obtain data for automatic generation of an accurate digital terrain model. The filtration technique was developed for data acquired under the least favorable con-ditions – in wet weather. Accuracy estimation of generating digital terrain model based on filtered data was carried out.


2019 ◽  
Vol 7 (1) ◽  
pp. 1-20
Author(s):  
Fotis Giagkas ◽  
Petros Patias ◽  
Charalampos Georgiadis

The purpose of this study is the photogrammetric survey of a forested area using unmanned aerial vehicles (UAV), and the estimation of the digital terrain model (DTM) of the area, based on the photogrammetrically produced digital surface model (DSM). Furthermore, through the classification of the height difference between a DSM and a DTM, a vegetation height model is estimated, and a vegetation type map is produced. Finally, the generated DTM was used in a hydrological analysis study to determine its suitability compared to the usage of the DSM. The selected study area was the forest of Seih-Sou (Thessaloniki). The DTM extraction methodology applies classification and filtering of point clouds, and aims to produce a surface model including only terrain points (DTM). The method yielded a DTM that functioned satisfactorily as a basis for the hydrological analysis. Also, by classifying the DSM–DTM difference, a vegetation height model was generated. For the photogrammetric survey, 495 aerial images were used, taken by a UAV from a height of ∼200 m. A total of 44 ground control points were measured with an accuracy of 5 cm. The accuracy of the aerial triangulation was approximately 13 cm. The produced dense point cloud, counted 146 593 725 points.


Author(s):  
ADAM MŁYNARCZYK ◽  
SŁAWOMIR KRÓLEWICZ ◽  
PAWEŁ RUTKOWSKI

The use of unmanned aerial vehicles is becoming more and more popular for making high-altitude and orthophotomap models. In this process, series of images are taken at specific intervals, usually lasting several seconds. This article demonstrates the ability to make models and orthophotomaps from dynamic images – video recorded from UAV. The best mutual coverage of photographs was indicated (95–96%) and the photogrammetric process for joining images was presented, through the creation of a point cloud to obtain a digital terrain model and the orotfotomap. The data was processed in 150 different variants and the usefulness of this method was demonstrated. Problems and errors that may occur during the processing of recorded image data are also described.


2018 ◽  
Vol 90 (2 suppl 1) ◽  
pp. 2001-2010 ◽  
Author(s):  
ADRIANO L. SCHÜNEMANN ◽  
PEDRO HENRIQUE A. ALMEIDA ◽  
ANDRÉ THOMAZINI ◽  
ELPÍDIO I. FERNANDES FILHO ◽  
MÁRCIO R. FRANCELINO ◽  
...  

Author(s):  
K. Bakuła ◽  
W. Ostrowski ◽  
M. Szender ◽  
W. Plutecki ◽  
A. Salach ◽  
...  

This paper presents the possibilities for using an unmanned aerial system for evaluation of the condition of levees. The unmanned aerial system is equipped with two types of sensor. One is an ultra-light laser scanner, integrated with a GNSS receiver and an INS system; the other sensor is a digital camera that acquires data with stereoscopic coverage. Sensors have been mounted on the multirotor, unmanned platform the Hawk Moth, constructed by MSP company. LiDAR data and images of levees the length of several hundred metres were acquired during testing of the platform. Flights were performed in several variants. Control points measured with the use of the GNSS technique were considered as reference data. The obtained results are presented in this paper; the methodology of processing the acquired LiDAR data, which increase in accuracy when low accuracy of the navigation systems occurs as a result of systematic errors, is also discussed. The Iterative Closest Point (ICP) algorithm, as well as measurements of control points, were used to georeference the LiDAR data. Final accuracy in the order of centimetres was obtained for generation of the digital terrain model. The final products of the proposed UAV data processing are digital elevation models, an orthophotomap and colour point clouds. The authors conclude that such a platform offers wide possibilities for low-budget flights to deliver the data, which may compete with typical direct surveying measurements performed during monitoring of such objects. However, the biggest advantage is the density and continuity of data, which allows for detection of changes in objects being monitored.


Sign in / Sign up

Export Citation Format

Share Document