scholarly journals Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images

2016 ◽  
Vol 9 (1) ◽  
pp. 22 ◽  
Author(s):  
Weijia Li ◽  
Haohuan Fu ◽  
Le Yu ◽  
Arthur Cracknell
2019 ◽  
Vol 41 (5) ◽  
pp. 2022-2046 ◽  
Author(s):  
Runmin Dong ◽  
Weijia Li ◽  
Haohuan Fu ◽  
Lin Gan ◽  
Le Yu ◽  
...  

2019 ◽  
Vol 40 (19) ◽  
pp. 7500-7515 ◽  
Author(s):  
Nurulain Abd Mubin ◽  
Eiswary Nadarajoo ◽  
Helmi Zulhaidi Mohd Shafri ◽  
Alireza Hamedianfar

Author(s):  
S A Hashim ◽  
S Daliman ◽  
I N Md Rodi ◽  
N Abd Aziz ◽  
N A Amaludin ◽  
...  

2020 ◽  
Vol 12 (18) ◽  
pp. 2985 ◽  
Author(s):  
Yeneng Lin ◽  
Dongyun Xu ◽  
Nan Wang ◽  
Zhou Shi ◽  
Qiuxiao Chen

Automatic road extraction from very-high-resolution remote sensing images has become a popular topic in a wide range of fields. Convolutional neural networks are often used for this purpose. However, many network models do not achieve satisfactory extraction results because of the elongated nature and varying sizes of roads in images. To improve the accuracy of road extraction, this paper proposes a deep learning model based on the structure of Deeplab v3. It incorporates squeeze-and-excitation (SE) module to apply weights to different feature channels, and performs multi-scale upsampling to preserve and fuse shallow and deep information. To solve the problems associated with unbalanced road samples in images, different loss functions and backbone network modules are tested in the model’s training process. Compared with cross entropy, dice loss can improve the performance of the model during training and prediction. The SE module is superior to ResNext and ResNet in improving the integrity of the extracted roads. Experimental results obtained using the Massachusetts Roads Dataset show that the proposed model (Nested SE-Deeplab) improves F1-Score by 2.4% and Intersection over Union by 2.0% compared with FC-DenseNet. The proposed model also achieves better segmentation accuracy in road extraction compared with other mainstream deep-learning models including Deeplab v3, SegNet, and UNet.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 153394-153402
Author(s):  
Qulin Tan ◽  
Juan Ling ◽  
Jun Hu ◽  
Xiaochun Qin ◽  
Jiping Hu

2019 ◽  
Vol 10 (4) ◽  
pp. 381-390 ◽  
Author(s):  
Ye Li ◽  
Lele Xu ◽  
Jun Rao ◽  
Lili Guo ◽  
Zhen Yan ◽  
...  

2020 ◽  
Vol 12 (22) ◽  
pp. 3845
Author(s):  
Zhiyu Xu ◽  
Yi Zhou ◽  
Shixin Wang ◽  
Litao Wang ◽  
Feng Li ◽  
...  

The real-time, accurate, and refined monitoring of urban green space status information is of great significance in the construction of urban ecological environment and the improvement of urban ecological benefits. The high-resolution technology can provide abundant information of ground objects, which makes the information of urban green surface more complicated. The existing classification methods are challenging to meet the classification accuracy and automation requirements of high-resolution images. This paper proposed a deep learning classification method for urban green space based on phenological features constraints in order to make full use of the spectral and spatial information of green space provided by high-resolution remote sensing images (GaoFen-2) in different periods. The vegetation phenological features were added as auxiliary bands to the deep learning network for training and classification. We used the HRNet (High-Resolution Network) as our model and introduced the Focal Tversky Loss function to solve the sample imbalance problem. The experimental results show that the introduction of phenological features into HRNet model training can effectively improve urban green space classification accuracy by solving the problem of misclassification of evergreen and deciduous trees. The improvement rate of F1-Score of deciduous trees, evergreen trees, and grassland were 0.48%, 4.77%, and 3.93%, respectively, which proved that the combination of vegetation phenology and high-resolution remote sensing image can improve the results of deep learning urban green space classification.


2014 ◽  
Vol 6 (10) ◽  
pp. 9749-9774 ◽  
Author(s):  
Panu Srestasathiern ◽  
Preesan Rakwatin

Sign in / Sign up

Export Citation Format

Share Document