scholarly journals A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images

Sensors ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 1377 ◽  
Author(s):  
Bin Hou ◽  
Yunhong Wang ◽  
Qingjie Liu
2020 ◽  
Vol 12 (12) ◽  
pp. 1933 ◽  
Author(s):  
Mingchang Wang ◽  
Haiming Zhang ◽  
Weiwei Sun ◽  
Sheng Li ◽  
Fengyan Wang ◽  
...  

In recent decades, high-resolution (HR) remote sensing images have shown considerable potential for providing detailed information for change detection. The traditional change detection methods based on HR remote sensing images mostly only detect a single land type or only the change range, and cannot simultaneously detect the change of all object types and pixel-level range changes in the area. To overcome this difficulty, we propose a new coarse-to-fine deep learning-based land-use change detection method. We independently created a new scene classification dataset called NS-55, and innovatively considered the adaptation relationship between the convolutional neural network (CNN) and the scene complexity by selecting the CNN that best fit the scene complexity. The CNN trained by NS-55 was used to detect the category of the scene, define the final category of the scene according to the majority voting method, and obtain the changed scene by comparison to obtain the so-called coarse change result. Then, we created a multi-scale threshold (MST) method, which is a new method for obtaining high-quality training samples. We used the high-quality samples selected by MST to train the deep belief network to obtain the pixel-level range change detection results. By mapping coarse scene changes to range changes, we could obtain fine multi-type land-use change detection results. Experiments were conducted on the Multi-temporal Scene Wuhan dataset and aerial images of a particular area of Dapeng New District, Shenzhen, where promising results were achieved by the proposed method. This demonstrates that the proposed method is practical, easy-to-implement, and the NS-55 dataset is physically justified. The proposed method has the potential to be applied in the large scale land use fine change detection problem and qualitative and quantitative research on land use/cover change based on HR remote sensing data.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 4673-4687
Author(s):  
Jixiang Zhao ◽  
Shanwei Liu ◽  
Jianhua Wan ◽  
Muhammad Yasir ◽  
Huayu Li

2021 ◽  
Vol 13 (22) ◽  
pp. 4528
Author(s):  
Xin Yang ◽  
Lei Hu ◽  
Yongmei Zhang ◽  
Yunqing Li

Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth’s surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.


2020 ◽  
Vol 166 ◽  
pp. 183-200 ◽  
Author(s):  
Chenxiao Zhang ◽  
Peng Yue ◽  
Deodato Tapete ◽  
Liangcun Jiang ◽  
Boyi Shangguan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document