scholarly journals Modeling and Efficiency Analysis of a Piezoelectric Energy Harvester Based on the Flow Induced Vibration of a Piezoelectric Composite Pipe

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4277 ◽  
Author(s):  
Maoying Zhou ◽  
Mohannad Al-Furjan ◽  
Ban Wang

This paper proposes and investigates a piezoelectric energy harvesting system based on the flow induced vibration of a piezoelectric composite cantilever pipe. Dynamic equations for the proposed energy harvester are derived considering the fluid-structure interaction and piezoelectric coupling vibration. Linear global stability analysis of the fluid-solid-electric coupled system is done using the numerical continuation method to find the neutrally stable vibration mode of the system. A measure of the energy harvesting efficiency of the system is proposed and analyzed. A series of simulations are conducted to throw light upon the influences of mass ratio, dimensionless electromechanical coupling, and dimensionless connected resistance upon the critical reduced velocity and the normalized energy harvesting efficiency. The results provide useful guidelines for the practical design of piezoelectric energy harvester based on fluid structure interaction and indicate some future topics to be investigated to optimize the device performance.

2021 ◽  
Vol 33 (6) ◽  
pp. 063610
Author(s):  
Guangjing Huang ◽  
Yingjie Xia ◽  
Yuting Dai ◽  
Chao Yang ◽  
You Wu

Author(s):  
M. Kim ◽  
P. Hughes ◽  
R. A. Ainsworth

This paper provides an overview of International Atomic Energy Agency (IAEA) draft technical guidelines on Fluid-Structure Interaction (FSI), which is supporting document for IAEA Safety Standards aimed at providing method and practices. The technical guidelines are based on sections in codes and standards, more general documents on FSI and documents describing particular plant issues or problems. The technical guidelines recognise that FSI has led to a range of problems in a range of reactor types including: flow-induced vibration in light water reactor (LWR) steam generators under external loading including seismic loading; fretting of LWR heat exchangers with the fretting loading dependent on cross-flow velocity; seismic effects and fluid sloshing in liquid metal cooled faster breeder reactor (LMFBR); and water hammer. In addition to providing an overview description of the technical guidelines, the paper also describes the process followed to produce and obtain peer review of the document.


Author(s):  
Mohammad A. Elyyan ◽  
Yeong-Yan Perng ◽  
Mai Doan

Flow-induced vibration (FIV) is one of the main reasons for subsea piping failure, where subsea pipes, which typically carry multiphase flow, experience large fluctuating forces. These fluctuating forces can induce severe vibrations leading to premature piping failure. This paper presents a transient numerical study of a typical subsea M-shape jumper pipe that is carrying a gas-liquid multiphase flow subject to a slug frequency of 4.4 Hz, starting from rest to include the start-up effect as part of the study. 3-D numerical simulations were used to capture the fluid-structure interaction (FSI) and estimate pipe deformations due to fluctuating hydrodynamic forces. In this paper, two FSI approaches were used to compute the pipe deformations, two-way coupled and one-way decoupled. Analysis of the results showed that decoupled (one-way) FSI approach overestimated the peak pipe deformation by about 100%, and showed faster decay of fluctuations than coupled (two-way) FSI analysis. The assessment of resonant risk due to FIV is also discussed.


Sign in / Sign up

Export Citation Format

Share Document