scholarly journals Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1736 ◽  
Author(s):  
Ikhtiyor Majidov ◽  
Taegkeun Whangbo

Single-trial motor imagery classification is a crucial aspect of brain–computer applications. Therefore, it is necessary to extract and discriminate signal features involving motor imagery movements. Riemannian geometry-based feature extraction methods are effective when designing these types of motor-imagery-based brain–computer interface applications. In the field of information theory, Riemannian geometry is mainly used with covariance matrices. Accordingly, investigations showed that if the method is used after the execution of the filterbank approach, the covariance matrix preserves the frequency and spatial information of the signal. Deep-learning methods are superior when the data availability is abundant and while there is a large number of features. The purpose of this study is to a) show how to use a single deep-learning-based classifier in conjunction with BCI (brain–computer interface) applications with the CSP (common spatial features) and the Riemannian geometry feature extraction methods in BCI applications and to b) describe one of the wrapper feature-selection algorithms, referred to as the particle swarm optimization, in combination with a decision tree algorithm. In this work, the CSP method was used for a multiclass case by using only one classifier. Additionally, a combination of power spectrum density features with covariance matrices mapped onto the tangent space of a Riemannian manifold was used. Furthermore, the particle swarm optimization method was implied to ease the training by penalizing bad features, and the moving windows method was used for augmentation. After empirical study, the convolutional neural network was adopted to classify the pre-processed data. Our proposed method improved the classification accuracy for several subjects that comprised the well-known BCI competition IV 2a dataset.

2017 ◽  
Vol 25 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Shang-Lin Wu ◽  
Yu-Ting Liu ◽  
Tsung-Yu Hsieh ◽  
Yang-Yin Lin ◽  
Chih-Yu Chen ◽  
...  

Author(s):  
Nitesh Singh Malan ◽  
Shiru Sharma

In this chapter, motor imagery (MI) based brain-computer interface (BCI) is introduced incorporating the explanation of key components required to design a practical BCI device. Its application to the medical and nonmedical sector is discussed in detail. In the experimental study, a feature extraction method using time, frequency, and phase analysis of Motor imagery EEG is presented. For the classification of MI task, EEG signals are decomposed using a dual-tree complex wavelet transform (DTCWT) and then time, frequency, and phase features are extracted. The validation of the proposed method is conducted using BCI competition IV dataset 2b. A Support vector machine (SVM) classifier is used to perform the classification task. Performance of the proposed method is compared with the standard feature extraction methods. The proposed scheme achieved a larger average classification accuracy of 82.81% which is better than that obtained by other methods.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mingwei Zhang ◽  
Yao Hou ◽  
Rongnian Tang ◽  
Youjun Li

In motor imagery brain computer interface system, the spatial covariance matrices of EEG signals which carried important discriminative information have been well used to improve the decoding performance of motor imagery. However, the covariance matrices often suffer from the problem of high dimensionality, which leads to a high computational cost and overfitting. These problems directly limit the application ability and work efficiency of the BCI system. To improve these problems and enhance the performance of the BCI system, in this study, we propose a novel semisupervised locality-preserving graph embedding model to learn a low-dimensional embedding. This approach enables a low-dimensional embedding to capture more discriminant information for classification by efficiently incorporating information from testing and training data into a Riemannian graph. Furthermore, we obtain an efficient classification algorithm using an extreme learning machine (ELM) classifier developed on the tangent space of a learned embedding. Experimental results show that our proposed approach achieves higher classification performance than benchmark methods on various datasets, including the BCI Competition IIa dataset and in-house BCI datasets.


2018 ◽  
Vol 15 (3) ◽  
pp. 036028 ◽  
Author(s):  
Antonio Maria Chiarelli ◽  
Pierpaolo Croce ◽  
Arcangelo Merla ◽  
Filippo Zappasodi

Sign in / Sign up

Export Citation Format

Share Document