scholarly journals Embedding Tangent Space Extreme Learning Machine for EEG Decoding in Brain Computer Interface Systems

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mingwei Zhang ◽  
Yao Hou ◽  
Rongnian Tang ◽  
Youjun Li

In motor imagery brain computer interface system, the spatial covariance matrices of EEG signals which carried important discriminative information have been well used to improve the decoding performance of motor imagery. However, the covariance matrices often suffer from the problem of high dimensionality, which leads to a high computational cost and overfitting. These problems directly limit the application ability and work efficiency of the BCI system. To improve these problems and enhance the performance of the BCI system, in this study, we propose a novel semisupervised locality-preserving graph embedding model to learn a low-dimensional embedding. This approach enables a low-dimensional embedding to capture more discriminant information for classification by efficiently incorporating information from testing and training data into a Riemannian graph. Furthermore, we obtain an efficient classification algorithm using an extreme learning machine (ELM) classifier developed on the tangent space of a learned embedding. Experimental results show that our proposed approach achieves higher classification performance than benchmark methods on various datasets, including the BCI Competition IIa dataset and in-house BCI datasets.

2021 ◽  
Vol 15 ◽  
Author(s):  
Yilu Xu ◽  
Xin Huang ◽  
Quan Lan

A motor imagery (MI) brain-computer interface (BCI) plays an important role in the neurological rehabilitation training for stroke patients. Electroencephalogram (EEG)-based MI BCI has high temporal resolution, which is convenient for real-time BCI control. Therefore, we focus on EEG-based MI BCI in this paper. The identification of MI EEG signals is always quite challenging. Due to high inter-session/subject variability, each subject should spend long and tedious calibration time in collecting amounts of labeled samples for a subject-specific model. To cope with this problem, we present a supervised selective cross-subject transfer learning (sSCSTL) approach which simultaneously makes use of the labeled samples from target and source subjects based on Riemannian tangent space. Since the covariance matrices representing the multi-channel EEG signals belong to the smooth Riemannian manifold, we perform the Riemannian alignment to make the covariance matrices from different subjects close to each other. Then, all aligned covariance matrices are converted into the Riemannian tangent space features to train a classifier in the Euclidean space. To investigate the role of unlabeled samples, we further propose semi-supervised and unsupervised versions which utilize the total samples and unlabeled samples from target subject, respectively. Sequential forward floating search (SFFS) method is executed for source selection. All our proposed algorithms transfer the labeled samples from most suitable source subjects into the feature space of target subject. Experimental results on two publicly available MI datasets demonstrated that our algorithms outperformed several state-of-the-art algorithms using small number of the labeled samples from target subject, especially for good target subjects.


2017 ◽  
Vol 33 (5) ◽  
pp. 3103-3111
Author(s):  
Francisco J. Martínez-Albaladejo ◽  
Andrés Bueno-Crespo ◽  
Germán Rodríguez-Bermúdez

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1736 ◽  
Author(s):  
Ikhtiyor Majidov ◽  
Taegkeun Whangbo

Single-trial motor imagery classification is a crucial aspect of brain–computer applications. Therefore, it is necessary to extract and discriminate signal features involving motor imagery movements. Riemannian geometry-based feature extraction methods are effective when designing these types of motor-imagery-based brain–computer interface applications. In the field of information theory, Riemannian geometry is mainly used with covariance matrices. Accordingly, investigations showed that if the method is used after the execution of the filterbank approach, the covariance matrix preserves the frequency and spatial information of the signal. Deep-learning methods are superior when the data availability is abundant and while there is a large number of features. The purpose of this study is to a) show how to use a single deep-learning-based classifier in conjunction with BCI (brain–computer interface) applications with the CSP (common spatial features) and the Riemannian geometry feature extraction methods in BCI applications and to b) describe one of the wrapper feature-selection algorithms, referred to as the particle swarm optimization, in combination with a decision tree algorithm. In this work, the CSP method was used for a multiclass case by using only one classifier. Additionally, a combination of power spectrum density features with covariance matrices mapped onto the tangent space of a Riemannian manifold was used. Furthermore, the particle swarm optimization method was implied to ease the training by penalizing bad features, and the moving windows method was used for augmentation. After empirical study, the convolutional neural network was adopted to classify the pre-processed data. Our proposed method improved the classification accuracy for several subjects that comprised the well-known BCI competition IV 2a dataset.


2019 ◽  
Vol 29 (10) ◽  
pp. 1950025 ◽  
Author(s):  
Pramod Gaur ◽  
Karl McCreadie ◽  
Ram Bilas Pachori ◽  
Hui Wang ◽  
Girijesh Prasad

The performance of a brain–computer interface (BCI) will generally improve by increasing the volume of training data on which it is trained. However, a classifier’s generalization ability is often negatively affected when highly non-stationary data are collected across both sessions and subjects. The aim of this work is to reduce the long calibration time in BCI systems by proposing a transfer learning model which can be used for evaluating unseen single trials for a subject without the need for training session data. A method is proposed which combines a generalization of the previously proposed subject-specific “multivariate empirical-mode decomposition” preprocessing technique by taking a fixed band of 8–30[Formula: see text]Hz for all four motor imagery tasks and a novel classification model which exploits the structure of tangent space features drawn from the Riemannian geometry framework, that is shared among the training data of multiple sessions and subjects. Results demonstrate comparable performance improvement across multiple subjects without subject-specific calibration, when compared with other state-of-the-art techniques.


2017 ◽  
Vol 2 (2) ◽  
pp. 1 ◽  
Author(s):  
M. K.M Rahman ◽  
Md. A. Mannan Joadder

Motor Imagery (MI) is a voluntary modulation of brain signals for specific action without real limb movement. It is essential to classify MI signal to design a brain computer interface (BCI). BCI involves a number of signal processing steps, and a lot of techniques have been developed for each step. There can be numerous combinations of these techniques at different steps that can be employed to design a BCI. This work focuses on MI-based BCI using EEG signal and reviews the existing techniques. More importantly, a detailed comparative study is performed to explore the important combinations of methods by comparing their performance quantitatively. Often a method, which performs very good in one combination, can be bad performer in other combinations and it is a dilemma for the researchers to select appropriate methods for their desired BCI application.In our performance analysis, we have systematically included the variations of methods in each step of BCI such that it gives idea to BCI researchers how each method in one step fits best with specific combinations of methods in other steps. We have shown that how much each step is sensitive towards overall performance of the BCI system.We hope that this work helps, especially for new researchers, to provide a better guideline for designing more efficient BCI system.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 379 ◽  
Author(s):  
Amardeep Singh ◽  
Sunil Lal ◽  
Hans Guesgen

Electroencephalogram (EEG) based motor imagery brain–computer interface (BCI) requires large number of subject specific training trials to calibrate the system for a new subject. This results in long calibration time that limits the BCI usage in practice. One major challenge in the development of a brain–computer interface is to reduce calibration time or completely eliminate it. To address this problem, existing approaches use covariance matrices of electroencephalography (EEG) trials as descriptors for decoding BCI but do not consider the geometry of the covariance matrices, which lies in the space of Symmetric Positive Definite (SPD) matrices. This inevitably limits their performance. We focus on reducing calibration time by introducing SPD based classification approach. However, SPD-based classification has limited applicability in small training sets because the dimensionality of covariance matrices is large in proportion to the number of trials. To overcome this drawback, our paper proposes a new framework that transforms SPD matrices in lower dimension through spatial filter regularized by prior information of EEG channels. The efficacy of the proposed approach was validated on the small sample scenario through Dataset IVa from BCI Competition III. The proposed approach achieved mean accuracy of 86.13 % and mean kappa of 0.72 on Dataset IVa. The proposed method outperformed other approaches in existing studies on Dataset IVa. Finally, to ensure the robustness of the proposed method, we evaluated it on Dataset IIIa from BCI Competition III and Dataset IIa from BCI Competition IV. The proposed method achieved mean accuracy 92.22 % and 81.21 % on Dataset IIIa and Dataset IIa, respectively.


Sign in / Sign up

Export Citation Format

Share Document