scholarly journals Online Signature Verification Based on a Single Template via Elastic Curve Matching

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4858
Author(s):  
Hu ◽  
Zheng ◽  
Zhan ◽  
Tang

Person verification using online handwritten signatures is one of the most widely researched behavior-biometrics. Many signature verification systems typically require five, ten, or even more signatures for an enrolled user to provide an accurate verification of the claimed identity. To mitigate this drawback, this paper proposes a new elastic curve matching using only one reference signature, which we have named the curve similarity model (CSM). In the CSM, we give a new definition of curve similarity and its calculation method. We use evolutionary computation (EC) to search for the optimal matching between two curves under different similarity transformations, so as to obtain the similarity distance between two curves. Referring to the geometric similarity property, curve similarity can realize translation, stretching and rotation transformation between curves, thus adapting to the inconsistency of signature size, position and rotation angle in signature curves. In the matching process of signature curves, we design a sectional optimal matching algorithm. On this basis, for each section, we develop a new consistent and discriminative fusion feature extraction for identifying the similarity of signature curves. The experimental results show that our system achieves the same performance with five samples assessed with multiple state-of-the-art automatic signature verifiers and multiple datasets. Furthermore, it suggests that our system, with a single reference signature, is capable of achieving a similar performance to other systems with up to five signatures trained.

2021 ◽  
Author(s):  
Mohammad Saleem ◽  
BenceKovari

Online signatures are one of the most commonly used biometrics. Several verification systems and public databases were presented in this field. This paper presents a combination of knearest neighbor and dynamic time warping algorithms as a verification system using the recently published DeepSignDB database. Our algorithm was applied on both finger and stylus input signatures which represent both office and mobile scenarios. The system was first tested on the development set of the database. It achieved an error rate of 6.04% for the stylus input signatures, 5.20% for the finger input signatures, and 6.00% for a combination of both types. The system was also applied to the evaluation set of the database and achieved very promising results, especially for finger input signatures.


Author(s):  
Mohammad Saleem ◽  
Bence Kovari

AbstractOnline signature verification considers signatures as time sequences of different measurements of the signing instrument. These signals are captured on digital devices and therefore consist of a discrete number of samples. To enrich or simplify this information, several verifiers employ resampling and interpolation as a preprocessing step to improve their results; however, their design decisions may be difficult to generalize. This study investigates the direct effect of the sampling rate of the input signals on the accuracy of online signature verification systems without using interpolation techniques and proposes a novel online signature verification system based on a signer-dependent sampling frequency. Twenty verifier configurations were created for five different public signature databases and a variety of popular preprocessing approaches and evaluated for 20–40 different sampling rates. Our results show that there is an optimal range for the sampling frequency and the number of sample points that minimizes the error rate of a verifier. A sampling frequency range of 15–50 Hz and a signature point count of 60–240 provided the best accuracies in our experiments. As expected, lower ranges showed inaccurate results; interestingly, however, higher frequencies often decreased the verification accuracy. The results show that one can achieve better or at least the same verification accuracies faster by down-sampling the online signatures before further processing. The proposed system achieved competitive results to state-of-the-art systems for different databases by using the optimal sampling frequency. We also studied the effect of choosing individual sampling frequencies for each signer and proposed a signature verification system based on signer-dependent sampling frequency. The proposed system was tested using 500 different verification methods and improved the accuracy in 92% of the test cases compared to the usage of the original frequency.


2014 ◽  
Vol 24 ◽  
pp. 47-52
Author(s):  
Joanna Putz-Leszczynska

This paper addresses template ageing in automatic signature verification systems. Handwritten signatures are a behavioral biometric sensitive to the passage of time. The experiments in this paper utilized a database that contains signature realizations captured in three sessions. The last session was captured seven years after the first one. The results presented in this paper show a potential risk of using an automatic handwriting verification system without including template ageing Purchase Article for $10 


Sign in / Sign up

Export Citation Format

Share Document