scholarly journals Fully-Textile, Wearable Chipless Tags for Identification and Tracking Applications

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 429 ◽  
Author(s):  
Laura Corchia ◽  
Giuseppina Monti ◽  
Egidio De Benedetto ◽  
Andrea Cataldo ◽  
Leopoldo Angrisani ◽  
...  

In this work, two fully-textile wearable devices, to be used as chipless identification tags in identification and tracking applications are presented. For the fabrication of the fully-textile tags, a layer of fleece was used as a substrate, while an adhesive non-woven conductive fabric was employed for the conductive parts. To allow radio-frequency identification of these chipless tags, two alternative techniques were used. One relies on associating a binary code with the resonance frequency of resonant devices: the presence/absence of the resonance peaks in the transmission scattering parameter, | S 21 | , of a set of resonators is used to encode a string of bits. The second technique for accomplishing radio-frequency identification of the chipless tags resorts to a frequency-shift coding technique, which is implemented by modifying the configuration of a hairpin resonator. The obtained numerical and experimental results confirm the suitability of the proposed strategies for obtaining entirely-textile, wearable chipless tags for identification and tracking purposes, which can be particularly useful, especially in the industrial sector. In this field, in fact, the proposed solutions would guarantee a seamless integration with clothes and would facilitate the user’s interaction with the IoT infrastructure. In this regard, one of the envisaged application scenarios related to the tracking of hides in the leather industry is also presented.

2018 ◽  
Vol 89 (4) ◽  
pp. 560-571 ◽  
Author(s):  
Xiaochen Chen ◽  
Leena Ukkonen ◽  
Johanna Virkki

Passive radio frequency identification-based technology is a convincing approach to the achievement of versatile energy- and cost-efficient wireless platforms for future wearable applications. By using two-part antenna structures, the antenna-electronics interconnections can remain non-stressed, which can significantly improve the reliability of the textile-embedded wireless components. In this article, we describe fabrication of two-part stretchable and non-stretchable passive ultra-high frequency radio frequency identification textile tags using electro-textile and embroidered antennas, and test their reliability when immersed as well as under cyclic strain. The results are compared to tags with traditional one-part dipole antennas fabricated from electro-textiles and by embroidery. Based on the results achieved, the initial read ranges of the two-part antenna tags, around 5 m, were only slightly shorter than those of the one-part antenna tags. In addition, the tag with two-part antennas can maintain high performance in a moist environment and during continuous stretching, unlike the one-part antenna tag where the antenna-integrated circuit attachment is under stress.


In Vivo ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 233-238 ◽  
Author(s):  
UMAR WAZIR ◽  
SALIM TAYEH ◽  
NICHOLAS PERRY ◽  
MICHAEL MICHELL ◽  
ANMOL MALHOTRA ◽  
...  

2019 ◽  
Vol 18 (12) ◽  
pp. 2642-2646
Author(s):  
Weikang Chen ◽  
Zhenyi Niu ◽  
Mengyuan Li ◽  
Zhuo Li ◽  
Qian Xu ◽  
...  

Author(s):  
Alex K. Jones ◽  
Swapna Dontharaju ◽  
Shenchih Tung ◽  
Peter J. Hawrylak ◽  
Leonid Mats ◽  
...  

2016 ◽  
Vol 29 (2) ◽  
pp. 236-247 ◽  
Author(s):  
Kaori Kusuda ◽  
Kazuhiko Yamashita ◽  
Akiko Ohnishi ◽  
Kiyohito Tanaka ◽  
Masaru Komino ◽  
...  

Purpose – To prevent malpractices, medical staff has adopted inventory time-outs and/or checklists. Accurate inventory and maintenance of surgical instruments decreases the risk of operating room miscounting and malfunction. In our previous study, an individual management of surgical instruments was accomplished using Radio Frequency Identification (RFID) tags. The purpose of this paper is to evaluate a new management method of RFID-tagged instruments. Design/methodology/approach – The management system of RFID-tagged surgical instruments was used for 27 months in clinical areas. In total, 13 study participants assembled surgical trays in the central sterile supply department. Findings – While using the management system, trays were assembled 94 times. During this period, no assembly errors occurred. An instrument malfunction had occurred after the 19th, 56th, and 73th uses, no malfunction caused by the RFID tags, and usage history had been recorded. Additionally, the time it took to assemble surgical trays was recorded, and the long-term usability of the management system was evaluated. Originality/value – The system could record the number of uses and the defective history of each surgical instrument. In addition, the history of the frequency of instruments being transferred from one tray to another was recorded. The results suggest that our system can be used to manage instruments safely. Additionally, the management system was acquired of the learning effect and the usability on daily maintenance. This finding suggests that the management system examined here ensures surgical instrument and tray assembly quality.


2010 ◽  
Vol 99 (5) ◽  
pp. 680-687
Author(s):  
Kazuyuki Mori ◽  
Zhaowu Meng ◽  
Hirosumi Kikuchi ◽  
Yasuhide Kataoka ◽  
Kazuhisa Nakazato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document