scholarly journals Evaluating the Vulnerability of Several Geodetic GNSS Receivers under Chirp Signal L1/E1 Jamming

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 814 ◽  
Author(s):  
Matej Bažec ◽  
Franc Dimc ◽  
Polona Pavlovčič-Prešeren

Understanding the factors that might intentionally influence the reception of global navigation satellite system (GNSS) signals can be a challenging topic today. The focus of this research is to evaluate the vulnerability of geodetic GNSS receivers under the use of a low-cost L1/E1 frequency jammer. A suitable area for testing was established in Slovenia. Nine receivers from different manufacturers were under consideration in this study. While positioning, intentional 3-minute jammings were performed by a jammer that was located statically at different distances from receivers. Furthermore, kinematic disturbances were performed using a jammer placed in a vehicle that passed the testing area at various speeds. An analysis of different scenarios indicated that despite the use of an L1/E1 jammer, the GLONASS (Russian: Globalnaya Navigatsionnaya Sputnikovaya Sistema) and Galileo signals were also affected, either due to the increased carrier-to-noise-ratio (C/N0) or, in the worst cases, by a loss-of-signal. A jammer could substantially affect the position, either with a lack of any practical solution or even with a wrong position. Maximal errors in the carrier-phase positions, which should be considered a concern for geodesy, differed by a few metres from the exact solution. The factor that completely disabled the signal reception was the proximity of a jammer, regardless of its static or kinematic mode.

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2594
Author(s):  
Aiden Morrison ◽  
Nadezda Sokolova ◽  
James Curran

This paper investigates the challenges of developing a multi-frequency radio frequency interference (RFI) monitoring and characterization system that is optimized for ease of deployment and operation as well as low per unit cost. To achieve this, we explore the design and development of a multiband global navigation satellite system (GNSS) front-end which is intrinsically capable of synchronizing side channel information from non-RF sensors, such as inertial measurement units and integrated power meters, to allow the simultaneous production of substantial amounts of sampled spectrum while also allowing low-cost, real-time monitoring and logging of detected RFI events. While the inertial measurement unit and barometer are not used in the RFI investigation discussed, the design features that provide for their precise synchronization with the RF sample stream are presented as design elements worth consideration. The designed system, referred to as Four Independent Tuners with Data-packing (FITWD), was utilized in a data collection campaign over multiple European and Scandinavian countries in support of the determination of the relative occurrence rates of L1/E1 and L5/E5a interference events and intensities where it proved itself a successful alternative to larger and more expensive commercial solutions. The dual conclusions reached were that it was possible to develop a compact low-cost, multi-channel radio frequency (RF) front-end that implicitly supported external data source synchronization, and that such monitoring systems or similar capabilities integrated within receivers are likely to be needed in the future due to the increasing occurrence rates of GNSS RFI events.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4375
Author(s):  
Veton Hamza ◽  
Bojan Stopar ◽  
Tomaž Ambrožič ◽  
Goran Turk ◽  
Oskar Sterle

Global Navigation Satellite System (GNSS) technology is widely used for geodetic monitoring purposes. However, in cases where a higher risk of receiver damage is expected, geodetic GNSS receivers may be considered too expensive to be used. As an alternative, low-cost GNSS receivers that are cheap, light, and prove to be of adequate quality over short baselines, are considered. The main goal of this research is to evaluate the positional precision of a multi-frequency low-cost instrument, namely, ZED-F9P with u-blox ANN-MB-00 antenna, and to investigate its potential for displacement detection. We determined the positional precision within static survey, and the displacement detection within dynamic survey. In both cases, two baselines were set, with the same rover point equipped with a low-cost GNSS instrument. The base point of the first baseline was observed with a geodetic GNSS instrument, whereas the second baseline was observed with a low-cost GNSS instrument. The results from static survey for both baselines showed comparable results for horizontal components; the precision was on a level of 2 mm or better. For the height component, the results show a better performance of low-cost instruments. This may be a consequence of unknown antenna calibration parameters for low-cost GNSS antenna, while statistically significant coordinates of rover points were obtained from both baselines. The difference was again more significant in the height component. For the displacement detection, a device was used that imposes controlled movements with sub-millimeter accuracy. Results, obtained on a basis of 30-min sessions, show that low-cost GNSS instruments can detect displacements from 10 mm upwards with a high level of reliability. On the other hand, low-cost instruments performed slightly worse as far as accuracy is concerned.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Yanlong Chen ◽  
Jincheng Fan ◽  
Guobin Chang ◽  
Siyu Zhang

GNSS (global navigation satellite system) compass is a low-cost, high-precision, and temporally stable north-finding technique. While the nonlinear baseline length constraint is widely known to be important in ambiguity resolution of GNSS compass, its direct effect on yaw angle estimation is theoretically analyzed in this work. Four different methods are considered with different ways in which the length constraint is made use of as follows: one without considering the constraints, one with simple scaling, one with indirect statistical scaling, and one with direct statistical scaling. It is found that simple scaling does not have any effect on yaw estimation; indirect and direct statistical scalings are equivalent to each other with both being able to increase the precision. The analysis and the conclusion developed in this work can go in parallel for the case of the tilt angle estimation.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4046 ◽  
Author(s):  
Fabian Ruwisch ◽  
Ankit Jain ◽  
Steffen Schön

We present analyses of Global Navigation Satellite System (GNSS) carrier phase observations in multiple kinematic scenarios for different receiver types. Multi-GNSS observations are recorded on high sensitivity and geodetic-grade receivers operating on a moving zero-baseline by conducting terrestrial urban and aerial flight experiments. The captured data is post-processed; carrier phase residuals are computed using the double difference (DD) concept. The estimated noise levels of carrier phases are analysed with respect to different parameters. We find DD noise levels for L1 carrier phase observations in the range of 1.4–2 mm (GPS, Global Positioning System), 2.8–4.6 mm (GLONASS, Global Navigation Satellite System), and 1.5–1.7 mm (Galileo) for geodetic receiver pairs. The noise level for high sensitivity receivers is at least higher by a factor of 2. For satellites elevating above 30 ∘ , the dominant noise process is white phase noise. For the flight experiment, the elevation dependency of the noise is well described by the exponential model, while for the terrestrial urban experiment, multipath and diffraction effects overlay; hence no elevation dependency is found. For both experiments, a carrier-to-noise density ratio (C/N 0 ) dependency for carrier phase DDs of GPS and Galileo is clearly visible with geodetic-grade receivers. In addition, C/N 0 dependency is also visible for carrier phase DDs of GLONASS with geodetic-grade receivers for the terrestrial urban experiment.


2020 ◽  
Author(s):  
Hessel Winsemius ◽  
Andreas Krietemeyer ◽  
Kirsten Van Dongen ◽  
Ivan Gayton ◽  
Frank Annor ◽  
...  

<p>Detailed elevation is a prerequisite for many hydrological applications. To name a few, understanding of urban and rural flood hazard and risk; understanding floodplain geometries and conveyance; and monitoring morphological changes. The accuracy of traditional Global Navigation Satellite System (GNSS) chipsets in smart phones is typically in the order of several meters, too low to be useful for such applications. Structure from Motion photogrammetry methods or Light Detection and Ranging (LIDAR), may be used to establish 3D point clouds from drone photos or lidar instrumentation, but even these require very accurate Ground Control Point (GCP) observations for a satisfactory result. These can be acquired through specialised GNSS rover equipment, combined with a multi-frequency GNSS base station or base station network, providing a Real-Time (RTK) or Post-Processing Kinematics (PPK) solution. These techniques are too expensive and too difficult to maintain for use within low resource settings and are usually deployed by experts or specialised firms.</p><p>Here we investigate if accurate positioning (horizontal and vertical) can be acquired using a very recently released low-cost multi-constellation dual-frequency receiver (ublox ZED-F9P), connected with a simple antenna and a smart phone. The setup is remarkably small and easy to carry into the field. Using a geodetic (high-grade) GNSS antenna and receiver as base station, initial results over baselines in the order of a few km with the low-cost receiver revealed a positioning performance in the centimeter domain. Currently, we are testing the solution using a smart phone setup as base station within Dar es Salaam, to improve elevation mapping within the community mapping project “Ramani Huria”. We will also test the equipment for use in GCP observations within the ZAMSECUR project in Zambia and TWIGA project in Ghana. This new technology opens doors to affordable and robust observations of positions and elevation in low resource settings.</p>


2018 ◽  
Vol 44 (2) ◽  
pp. 36-44 ◽  
Author(s):  
Massimiliano Pepe

In recent years, the use of low cost GNSS receivers is becoming widespread due to their increasing performance in the spatial positioning, flexibility, ease of use and really interesting price. In addition, a recent technique of Global Navigation Satellite System (GNSS) survey, called Network Real Time Kinematic (NRTK), allows to obtain to rapid and accurate positioning measurements. The main feature of this approach is to use the raw measurements obtained and stored from a network of Continuously Operating Reference Stations (CORS) in order to generate more reliable error models that can mitigate the distance-dependent errors within the area covered by the CORS. Also, considering the huge potential of this GNSS positioning system, the purpose of this paper is to analyze and investigate the performance of the NTRK approach using a low cost GNSS receiver, in stop-and-go kinematic technique. By several case studies it was shown that, using a low cost RTK board for Arduino environment, a smartphone with open source application for Android and the availability of data correction from CORS service, a quick and accurate positioning can be obtained. Because the measures obtained in this way are quite noisy and, more in general, increasing with the baseline, by a simple and suitable statistic treatment, it was possible to increase the quality of the measure. In this way, this low cost architecture could be applied in many geomatics fields. In addition to presenting the main aspects of the NTRK infrastructure and a review of several types of correction, a general workflow in order to obtain quality data in NRTK mode, regardless of the type of GNSS receiver (multi constellations, single or many frequencies, etc.) is discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jalal Ibrahim Al-Azizi ◽  
Helmi Zulhaidi Mohd Shafri

Nowadays, a Global Navigation Satellite System (GNSS) unit is embedded in nearly every smartphone. This unit allows a smartphone to detect the user’s location and motion, and it makes functions, such as navigation, tracking, and compass applications, available to the user. Therefore, the GNSS unit has become one of the most important features in modern smartphones. However, because most smartphones incorporate relatively low-cost GNSS chips, their localization accuracy varies depending on the number of accessible GNSS satellites, and it is highly dependent on environmental factors that cause interference such as forests and buildings. This research evaluated the performance of the GNSS units inside two different models of smartphones in determining pedestrian locations in different environments. The results indicate that the overall performances of the two devices were related directly to the environment, type of smartphone/GNSS chipset, and the application used to collect the information.


2021 ◽  
Vol 13 (16) ◽  
pp. 3130
Author(s):  
Pengfei Zhang ◽  
Rui Tu ◽  
Yuping Gao ◽  
Ju Hong ◽  
Junqiang Han ◽  
...  

The modernized GPS, Galileo, and BeiDou global navigation satellite system (BDS3) offers new potential for time transfer using overlap-frequency (L1/E1/B1, L5/E5a/B2a) observations. To assess the performance of time and frequency transfer with overlap-frequency observations for GPS, Galileo, and BDS3, the mathematical models of single- and dual-frequency using the carrier-phase (CP) technique are discussed and presented. For the single-frequency CP model, the three-day average RMS values of the L5/E5a/B2a clock difference series were 0.218 ns for Galileo and 0.263 ns for BDS3, of which the improvements were 36.2% for Galileo and 43.9% for BDS3 when compared with the L1/E1/B1 solution at BRUX–PTBB. For the hydrogen–cesium time link BRUX–KIRU, the RMS values of the L5/E5a/B2a solution were 0.490 ns for Galileo and 0.608 ns for BDS3, improving Galileo by 6.4% and BDS3 by 12.5% when compared with the L1/E1/B1 solution. For the dual-frequency CP model, the average stability values of the L5/E5a/B2a solution at the BRUX–PTBB time link were 3.54∙× 10−12 for GPS, 2.20 × 10−12 for Galileo, and 2.69 × 10−12 for BDS3, of which the improvements were 21.0%, 45.1%, and 52.3%, respectively, when compared with the L1/E1/B1 solution. For the BRUX–KIRU time link, the improvements were 4.2%, 30.5%, and 36.1%, respectively.


Sign in / Sign up

Export Citation Format

Share Document