scholarly journals Research on the Influence of Vehicle Speed on Safety Warning Algorithm: A Lane Change Warning System Case Study

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2683
Author(s):  
Rui Fu ◽  
Yali Zhang ◽  
Chang Wang ◽  
Wei Yuan ◽  
Yingshi Guo ◽  
...  

Speed has an important impact on driving safety, however, this factor is not included in existing safety warning algorithms. This study uses lane change systems to study the influence of vehicle speed on safety warning algorithms, aiming to determine lane change warning rules for different speeds (DS-LCW). Thirty-five drivers are recruited to carry out an extreme trial and naturalistic driving experiment. The vehicle speed, relative speed, relative distance, and minimum safety deceleration (MSD) related to lane change characteristics are then analyzed and calculated as warning rule characterization parameters. Lane change warning rules for a rear vehicle in the target lane under four-speed levels of 60 ≤ v < 70 km/h, 70 ≤ v < 80 km/h, 80 ≤ v < 90 km/h, and v ≥ 90 km/h are established. The accuracy of lane change warning rules not considering speed level (NDS-LCW) and ISO 17387 are found to be 87.5% and 79.8%, respectively. Comparatively, the accuracy rate of DS-LCW under four-speed levels is 94.6%, 93.8%, 90.0%, and 92.6%, respectively, which is significantly superior. The algorithm proposed in this paper provides warning in the lane change process with a smaller relative distance, and the accuracy rate of DS-LCW is significantly superior to NDS-LCW and ISO 17387.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 81370-81381 ◽  
Author(s):  
Qinyu Sun ◽  
Hongjia Zhang ◽  
Zhen Li ◽  
Chang Wang ◽  
Kang Du

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yongtao Liu ◽  
Jie Qiao ◽  
Yanting Hu ◽  
Tengyuan Fang ◽  
Ting Xu ◽  
...  

Different vehicular speed limits may have an impact on the balance between safety and efficiency of travel on mountainous road corners associated with complex road conditions. Placing suitable speed limit warning signs does not merely effectively improve traffic safety but can also improve traffic efficiency. In this study, a global positioning system (GPS) terminal and Metrocount were used to collect vehicle speed data from more than 40 provincial-level curves in 8 provinces over the course of 1 year. Each road data collection time-period lasted approximately 8 hours. A descriptive statistics method was adopted by means of data screening and pretreatment. Additionally, both a velocity difference estimation model was established and a linear model of velocity differential estimation was constructed. Quantitative analysis was carried out on the safe speed, the driver’s expected speed, and the location of the speed limit warning signs. This demonstrated a positive correlation with the initial speed. When the difference in speed was greater than 15 km/h, a safety warning sign was required to limit the design speed to 80 km/h. A safety warning sign was also required when the corner radius was less than 300 m. The location of safety warning signs could be calculated based on the operating speed and taking driving safety and the visual range of drivers into consideration. The results can provide a theoretical reference for setting up appropriate safe speed limiting signs on road corners in mountainous areas.


2013 ◽  
Vol 340 ◽  
pp. 924-928
Author(s):  
Peng Zhang ◽  
Zhen Liu ◽  
Zhong Su Ma

Strengthening food security early warning system is an important content of the food safety supervision. The gray model of edible forest products warning is constructed on the basis of gray prediction theory, and this article takes the pecan peroxide value in laboratory at room temperature be measured during storage as the example to do the case study. The results show that the model has higher prediction accuracy and generalization ability, and the early warning of edible forest product quality and safety is reliable.


2021 ◽  
Author(s):  
Siti Fatimah Abdul Razak ◽  
Tai Jia Wei ◽  
Sumendra Yogarayan ◽  
Mohd Fikri Azli Abdullah ◽  
Nur Ezzati Yunus

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xuewei Li ◽  
Yuchen Jia ◽  
Yufei Chen ◽  
Guanyang Xing ◽  
Xiaohua Zhao ◽  
...  

Changes in driving behavior caused by reduced visibility in fog can lead to crashes. To improve driving safety in fog weather, a fog warning system based on connected vehicle (CV) technology is proposed. From the perspective of human factors, this study evaluates the driving safety based on drivers’ speed change under different fog levels (i.e., no fog, light fog, and heavy fog) and different technical levels (i.e., normal, with a dynamic message sign (DMS), and with a human-machine interface (HMI)). The driving behavior data were collected by a driving simulation experiment. The experimental road was divided into three zones: clear zone, transition zone, and fog zone. To quantify the change of vehicle speed comprehensively, the speed and acceleration were selected. Meanwhile, the vehicle speed safety entropy and acceleration safety entropy were proposed based on sample entropy theory. Furthermore, the changes of each index in different zones were analyzed. The results show that the use of fog warning system can improve speed stability and driving safety in fog zones and can make the driver decelerate in advance with a smaller deceleration before entering the fog zones. The higher the technical level is, the earlier the driver decelerates. Under the condition of light fog, the fog warning system with HMI has a better effect in terms of improving speed stability, while under the condition of heavy fog, there is little difference between the two technical levels. In general, this study proposed a novel safety evaluation index and a general evaluation method of the fog warning system.


2012 ◽  
Vol 253-255 ◽  
pp. 1913-1917
Author(s):  
Ze Bin Zhao

In order to reduce the negative impact of urban traffic air pollution, this paper firstly analyzes the relationship between urban traffic air pollution and vehicle speed, after providing the relationship model, the paper establishes a comprehensive pricing model of urban traffic air pollution based on bi-level programming, the model considers the traffic air pollution pricing, and includes the factors of congestion pricing, bus fee, pricing revenue redistribution on improvement of public transport services and the expansion of road capacity. The case study shows that the implementation of comprehensive pricing of urban traffic air pollution can reduce traffic pollution and unreasonable traffic flow, which is conducive to the sustainable development of the city.


2001 ◽  
Vol 1779 (1) ◽  
pp. 134-140 ◽  
Author(s):  
Derek Baker ◽  
Rob Bushman ◽  
Curtis Berthelot

Different types of intelligent rollover system deployed by road agencies across North America are investigated. The importance of weight is addressed for maximum effectiveness of rollover warning messages for commercial vehicles in a potential rollover situation on sharp curves or exit ramps. The type of information that may be used to activate a rollover is discussed to analyze the number of correctly warned vehicles compared with the number of false warnings generated by the rollover warning system. A case study of the effectiveness of an intelligent rollover system is presented. On the basis of this case study, it was found that speed-based rollover warning systems generated anywhere from 44 percent to 49 percent more false rollover warnings for commercial vehicles than did rollover warning systems that employed weight information in the rollover decision criteria.


Sign in / Sign up

Export Citation Format

Share Document