scholarly journals Negentropy-Based Sparsity-Promoting Reconstruction with Fast Iterative Solution from Noisy Measurements

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5384
Author(s):  
Yingxin Zhao ◽  
Yingjie Huang ◽  
Hong Wu ◽  
Ming Zhang ◽  
Zhiyang Liu ◽  
...  

Compressed sensing provides an elegant framework for recovering sparse signals from compressed measurements. This paper addresses the problem of sparse signal reconstruction from compressed measurements that is more robust to complex, especially non-Gaussian noise, which arises in many applications. For this purpose, we present a method that exploits the maximum negentropy theory to promote the adaptability to noise. This problem is formalized as a constrained minimization problem, where the objective function is the negentropy of measurement error with sparse constraint ℓp(0<p<1)-norm. On the minimization issue of the problem, although several promising algorithms have been proposed in the literature, they are very computationally demanding and thus cannot be used in many practical situations. To improve on this, we propose an efficient algorithm based on a fast iterative shrinkage-thresholding algorithm that can converge fast. Both the theoretical analysis and numerical experiments show the better accuracy and convergent rate of the proposed method.

Algorithms ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 88
Author(s):  
Florin Ilarion Miertoiu ◽  
Bogdan Dumitrescu

In this paper, the Feasibility Pump is adapted for the problem of sparse representations of signals affected by Gaussian noise. This adaptation is tested and then compared to Orthogonal Matching Pursuit (OMP) and the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The feasibility pump recovers the true support much better than the other two algorithms and, as the SNR decreases and the support size increases, it has a smaller recovery and representation error when compared with its competitors. It is observed that, in order for the algorithm to be efficient, a regularization parameter and a weight term for the error are needed.


2012 ◽  
Vol 71 (17) ◽  
pp. 1541-1555
Author(s):  
V. A. Baranov ◽  
S. V. Baranov ◽  
A. V. Nozdrachev ◽  
A. A. Rogov

2013 ◽  
Vol 72 (11) ◽  
pp. 1029-1038
Author(s):  
M. Yu. Konyshev ◽  
S. V. Shinakov ◽  
A. V. Pankratov ◽  
S. V. Baranov

2013 ◽  
Vol 32 (9) ◽  
pp. 2445-2447
Author(s):  
Qing-hua LI ◽  
Dalabaev Senbai ◽  
Xin-jian QIU ◽  
Chang LIAO ◽  
Quan-fu SUN

Sign in / Sign up

Export Citation Format

Share Document