scholarly journals Power Quality Disturbance Tracking Based on a Proprietary FPGA Sensor with GPS Synchronization

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3910
Author(s):  
Oscar N Pardo-Zamora ◽  
Rene de J Romero-Troncoso ◽  
Jesus R Millan-Almaraz ◽  
Daniel Morinigo-Sotelo ◽  
Roque A Osornio-Rios ◽  
...  

The study of power quality (PQ) has gained relevance over the years due to the increase in non-linear loads connected to the grid. Therefore, it is important to study the propagation of power quality disturbances (PQDs) to determine the propagation points in the grid, and their source of generation. Some papers in the state of the art perform the analysis of punctual measurements of a limited number of PQDs, some of them using high-cost commercial equipment. The proposed method is based upon a developed proprietary system, composed of a data logger FPGA with GPS, that allows the performance of synchronized measurements merged with the full parameterized PQD model, allowing the detection and tracking of disturbances propagating through the grid using wavelet transform (WT), fast Fourier transform (FFT), Hilbert–Huang transform (HHT), genetic algorithms (GAs), and particle swarm optimization (PSO). Measurements have been performed in an industrial installation, detecting the propagation of three PQDs: impulsive transients propagated at two locations in the grid, voltage fluctuation, and harmonic content propagated to all the locations. The results obtained show that the low-cost system and the developed methodology allow the detection of several PQDs, and track their propagation within a grid with 100% accuracy.

Agriculture ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 89 ◽  
Author(s):  
Alexandros Zervopoulos ◽  
Athanasios Tsipis ◽  
Aikaterini Georgia Alvanou ◽  
Konstantinos Bezas ◽  
Asterios Papamichail ◽  
...  

The advent of Internet of Things has propelled the agricultural domain through the integration of sensory devices, capable of monitoring and wirelessly propagating information to producers; thus, they employ Wireless Sensor Networks (WSNs). These WSNs allow real time monitoring, enabling intelligent decision-making to maximize yields and minimize cost. Designing and deploying a WSN is a challenging and multivariate task, dependent on the considered environment. For example, a need for network synchronization arises in such networks to correlate acquired measurements. This work focuses on the design and installation of a WSN that is capable of facilitating the sensing aspects of smart and precision agriculture applications. A system is designed and implemented to address specific design requirements that are brought about by the considered environment. A simple synchronization scheme is described to provide time-correlated measurements using the sink node’s clock as reference. The proposed system was installed on an olive grove to assess its effectiveness in providing a low-cost system, capable of acquiring synchronized measurements. The obtained results indicate the system’s overall effectiveness, revealing a small but expected difference in the acquired measurements’ time correlation, caused mostly by serial transmission delays, while yielding a plethora of relevant environmental conditions.


2007 ◽  
Vol 40 (11) ◽  
pp. 53
Author(s):  
BRUCE K. DIXON
Keyword(s):  
Low Cost ◽  

Author(s):  
Ramin Sattari ◽  
Stephan Barcikowski ◽  
Thomas Püster ◽  
Andreas Ostendorf ◽  
Heinz Haferkamp

2019 ◽  
Vol 16 (22) ◽  
pp. 20190401-20190401
Author(s):  
Jeonghwa Yoo ◽  
Sangho Choe

Sign in / Sign up

Export Citation Format

Share Document