data logger
Recently Published Documents


TOTAL DOCUMENTS

1023
(FIVE YEARS 329)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Armen Gharibans ◽  
Tommy Hayes ◽  
Daniel Carson ◽  
Stefan Calder ◽  
Chris Varghese ◽  
...  

Abstract Disorders of gastric function are highly prevalent, but diagnosis often remains symptom-based and inconclusive. Body surface gastric mapping is an emerging diagnostic solution, but current approaches lack scalability and are cumbersome and clinically impractical. We present a novel scalable system for non-invasively mapping gastric electrophysiology in high-resolution (HR) at the body-surface. The system comprises a custom-designed flexible HR sensor array and portable data-logger synchronized to an App, with automated analysis and visualization algorithms. The novel system underwent performance testing then validation in 24 healthy subjects. In all subjects, gastric electrophysiology and meal responses were successfully captured and mapped non-invasively (mean frequency 2.9 ± 0.3 cycles per minute; peak amplitude at mean 60 m postprandially with return to baseline in <4 h). Spatiotemporal mapping showed regular and consistent wave activity of mean direction 182.7°±73 (74.7% antegrade, 7.8% retrograde, 17.5% indeterminate). The presented system is a new diagnostic tool for assessing gastric function that is scalable, validated, and ready for clinical applications, offering several biomarkers that are new to gastroenterology practice.


2021 ◽  
pp. 249-264
Author(s):  
A Aashiq ◽  
Haniya Ashraf ◽  
Supraja Sivaviji ◽  
O.V. Gnana Swathika

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 148
Author(s):  
Salvatore R. Curasi ◽  
Ian Klupar ◽  
Michael M. Loranty ◽  
Adrian V. Rocha

Soil temperatures play an important role in determining the distribution and function of organisms. However, soil temperature is decoupled from air temperature and varies widely in space. Characterizing and predicting soil temperature requires large and expensive networks of data loggers. We developed an open-source soil temperature data logger and created online resources to ensure our design was accessible. We tested data loggers constructed by students, with little prior electronics experience, in the lab, and in the field in Alaska. The do-it-yourself (DIY) data logger was comparably accurate to a commercial system with a mean absolute error of 2% from −20–0 °C and 1% from 0–20 °C. They captured accurate soil temperature data and performed reliably in the field with less than 10% failing in the first year of deployment. The DIY loggers were ~1.7–7 times less expensive than commercial systems. This work has the potential to increase the spatial resolution of soil temperature monitoring and serve as a powerful educational tool. The DIY soil temperature data logger will reduce data collection costs and improve our understanding of species distributions and ecological processes. It also provides an educational resource to enhance STEM, accessibility, inclusivity, and engagement.


MAUSAM ◽  
2021 ◽  
Vol 49 (4) ◽  
pp. 475-480
Author(s):  
S. ARULRAJ ◽  
T. DHARMARAJ ◽  
S. B. DEBAJE ◽  
A. BAGAVATH SINGH ◽  
K. G. VERNEKAR

A microclimatological tower of 1.6 m height with six instrumented booms at different heights carrying wind speed, temperature and humidity sensors was set up at Robertsgun 24° 42'N, 83°4'E, 3l2m amsl) to study the implication of the total Solar eclipse on the dynamics of Atmospheric Boundary Layer (ABL). Apart from this, the soil temperature and heat flux were also measured during the same time. The observations were taken with a one minute average interval and recorded continuously with the data logger and then transferred to a PC for later use. The data were collected during 2l –26 October 1995. During the eclipse period decrease of surface temperature and soil temperature by 6.2°C and 3.5°C respectively and increase of humidity by nearly 60% were observed. Due to the decrease in velocity fluctuations, the mean wind speed showed the sharp increase compared to other days. The setting of stable atmosphere before the total solar eclipse was observed.


2021 ◽  
Vol 30 (1) ◽  
pp. 185-199
Author(s):  
Mohd Ruzaimi Ariffin ◽  
Suhaidi Shafie ◽  
Wan Zuha Wan Hasan ◽  
Norhafiz Azis ◽  
Mohammad Effendy Yaacob ◽  
...  

This article presents a microcontroller-based direct current (DC) energy data logger developed by adapting low-cost ATmega328 by measuring the PV system DC and voltage characteristics while simultaneously recording the measured value over time to compute the energy production Watt-hour (Wh). The prototype logger has been tested on a live 1 kW standalone PV system where the voltage sensor detects PV series array output voltage ranging between 0–50 VDC by a voltage divider sensing circuit. For accurate sensing of the current output measurement from the PV array, 50A ACS756 hall effect IC was integrated as the current sensor. The data was measured and saved in text format with comma-separated values (CSV) in an SD card, read using Microsoft Excel software. The liquid crystal display (LCD) showed the actual value of the recording process’s current, voltage, power, and duration in minutes. The recorded data has been compared to the standard laboratory digital multimeter for calibration manually to justify the measurement value. The error is minimized to 0.6% average by varying the constant float value in the programming code. The advantage of developing this logger is that the development cost is much cheaper than the standard commercial PV energy meter, can be reproduced for other DC application energy measurements, and easily modify the voltage and current range to suit the application. Apart from that, this logger also provides high accuracy performance, and its independent characteristic is practical for off-grid or off-site PV system use.


MAUSAM ◽  
2021 ◽  
Vol 67 (2) ◽  
pp. 499-504
Author(s):  
N. MEENATCHI NATHAN ◽  
CHANABASANAGOUDA. S. PATIL ◽  
J. P. IMMANUEL JAYAPRAKASH

Pilot balloon observatories of India Meteorological Department (IMD) are using Hand Held Data Logger (HHDL), manufactured by SAMEER, to compute upper air data since 2007. The HHDL, which is a sleek and microcontroller based battery operated unit, accepts all information through the numeric keypad pertaining to the PB ascent for raw file generation and pilot balloon data processing. The raw file can be transferred to computer system as an input file to PC based Pibal computation software. This software generates Pibal messages similar to HHDL in addition to National Data Centre (NDC) data format and monthly climate. In case of any failure of hardware, both HHDL & PC based Pibal computation software cannot be used.  Therefore to overcome this problem, a PC based Pibal data keying software has been developed using visual C sharp. The new software, what is developed, creates an input file similar to HHDL; it was tested with PC based Pibal computation software which works successfully as an alternate in case of failure of HHDL & it’s hardware accessories  


Abstract The inception of a moored buoy network in the northern Indian Ocean in 1997 paved the way for systematic collection of longterm time series observations of meteorological and oceanographic parameters. This buoy network was revamped in 2011 with OMNI (Ocean Moored buoy Network for north Indian Ocean) buoys fitted with additional sensors to better quantify the air-sea fluxes. An inter-comparison of OMNI buoy measurements with the nearby WHOI mooring during the year 2015 revealed an overestimation of downwelling longwave radiation (LWR↓). Analysis of the OMNI and WHOI radiation sensors at a test station at NIOT during 2019 revealed that the accurate and stable amplification of the thermopile voltage records along with the customized data logger in the WHOI system results in better estimations of LWR↓. The offset in NIOT measured LWR↓ is estimated firstly by segregating the LWR↓ during clear sky conditions identified using the downwelling shortwave radiation measurements from the same test station, and secondly, finding the offset by taking the difference with expected theoretical clear sky LWR↓. The corrected LWR↓ exhibited good agreement with that of collocated WHOI measurements, with a correlation of 0.93. This method is applied to the OMNI field measurements and again compared with the nearby WHOI mooring measurements, exhibiting a better correlation of 0.95. This work has led to the revamping of radiation measurements in OMNI buoys and provides a reliable method to correct past measurements and improve estimation of air-sea fluxes in the Indian Ocean.


2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Dan Mugisidi ◽  
Abdul Rahman ◽  
Oktarina Heriyani ◽  
Pancatatva Hesti Gunawan

The geometry of a solar still determines the convection constants C and n, which in turn affect the convection heat transfer coefficient’s value and mass. A method for determining the value of convection heat transfer constants C and n has already been developed by the researchers. Therefore, this study aimed to use several methods and theories to find the value of convection heat transfer constants C and n. The results are then compared with the results of the study. The solar still used in this study has one slope. To reduce variables that cannot be controlled, the data collection was conducted indoors using a halogen lamp that can be regulated as a heat source for 24 hours nonstop. The sea surface height in the solar still was maintained at a height of 20 mm, using a height regulator. Temperature was measured using a data logger set to enter data every hour. The desalinised clean water was stored in bottles placed on scales that were recorded every one hour. Room temperature was maintained in the range of 35 to 36 oC. The data in this study were used to calculate the heat transfer constants C and n to obtain the value of the convection heat transfer coefficient and mass calculation. This study compares the calculation models of Tiwari, Dunkle and Power. The following calculation model results: Tiwari model, C = 0.082 and n = 0.612; Dunkle model, C = 0.075 and n = 1/3; Power model, C = 0.815 and n = 0.611. The C and n values obtained with these four approaches reveal that the results from the Power model calculation are the closest to the actual mass, showing a percentage deviation of 1.63%.


2021 ◽  
Vol 54 (54) ◽  
pp. 137-149
Author(s):  
Dominika Karpińska ◽  
Mieczysław Kunz

Abstract In order to assess or determine the overall quality of the surrounding geographical environment, it is necessary to measure selected factors that directly or indirectly affect its condition. The aspects to be monitored include i.a. air pollution levels, surface water purity, soil erosion rates, as well as night sky light pollution, a phenomenon increasingly often observed with the unaided eye. To collect data on the night sky brightness on a regular basis, a remote measuring device was designed and constructed using specialised electronic components, wireless communication, programming code, a high-sensitivity digital light data logger and custom-made programme code. LPWAN networks, including LoRa technology, were developed to support a number of mobile devices where long wireless operation is a priority. To determine the potential use of LoRa technology, as well as to plan the target locations of network access gates (gateways) and the deployment of measuring devices for the collection of environmental data, tests of signal coverage and signal visibility, including measurements of its strength, were carried out in a selected, compact part of the city of Toruń. The paper presents the results of research on the visibility of the LoRa network in a built-up area, such as a university campus, using antennas of two different lengths. The obtained results can be used to design distributed measurement networks in areas with varying density of buildings.


Sign in / Sign up

Export Citation Format

Share Document