scholarly journals Multi-Robot Preemptive Task Scheduling with Fault Recovery: A Novel Approach to Automatic Logistics of Smart Factories

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6536
Author(s):  
Vivian Cremer Kalempa ◽  
Luis Piardi ◽  
Marcelo Limeira ◽  
André Schneider de Oliveira

This paper presents a novel approach for Multi-Robot Task Allocation (MRTA) that introduces priority policies on preemptive task scheduling and considers dependencies between tasks, and tolerates faults. The approach is referred to as Multi-Robot Preemptive Task Scheduling with Fault Recovery (MRPF). It considers the interaction between running processes and their tasks for management at each new event, prioritizing the more relevant tasks without idleness and latency. The benefit of this approach is the optimization of production in smart factories, where autonomous robots are being employed to improve efficiency and increase flexibility. The evaluation of MRPF is performed through experimentation in small-scale warehouse logistics, referred to as Augmented Reality to Enhanced Experimentation in Smart Warehouses (ARENA). An analysis of priority scheduling, task preemption, and fault recovery is presented to show the benefits of the proposed approach.

2021 ◽  
Author(s):  
Ching-Wei Chuang ◽  
Harry H. Cheng

Abstract In the modern world, building an autonomous multi-robot system is essential to coordinate and control robots to help humans because using several low-cost robots becomes more robust and efficient than using one expensive, powerful robot to execute tasks to achieve the overall goal of a mission. One research area, multi-robot task allocation (MRTA), becomes substantial in a multi-robot system. Assigning suitable tasks to suitable robots is crucial in coordination, which may directly influence the result of a mission. In the past few decades, although numerous researchers have addressed various algorithms or approaches to solve MRTA problems in different multi-robot systems, it is still difficult to overcome certain challenges, such as dynamic environments, changeable task information, miscellaneous robot abilities, the dynamic condition of a robot, or uncertainties from sensors or actuators. In this paper, we propose a novel approach to handle MRTA problems with Bayesian Networks (BNs) under these challenging circumstances. Our experiments exhibit that the proposed approach may effectively solve real problems in a search-and-rescue mission in centralized, decentralized, and distributed multi-robot systems with real, low-cost robots in dynamic environments. In the future, we will demonstrate that our approach is trainable and can be utilized in a large-scale, complicated environment. Researchers might be able to apply our approach to other applications to explore its extensibility.


2006 ◽  
Vol 13 (5) ◽  
pp. 548-551 ◽  
Author(s):  
Ping-an Gao ◽  
Zi-xing Cai

2021 ◽  
Author(s):  
Ayan Dutta ◽  
Vladimir Ufimtsev ◽  
Tuffa Said ◽  
Inmo Jang ◽  
Roger Eggen

2021 ◽  
Author(s):  
Shinkyu Park ◽  
Yaofeng Desmond Zhong ◽  
Naomi Ehrich Leonard

Author(s):  
Anis Koubaa ◽  
Hachemi Bennaceur ◽  
Imen Chaari ◽  
Sahar Trigui ◽  
Adel Ammar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document