A Novel Approach With Bayesian Networks to Multi-Robot Task Allocation in Dynamic Environments

2021 ◽  
Author(s):  
Ching-Wei Chuang ◽  
Harry H. Cheng

Abstract In the modern world, building an autonomous multi-robot system is essential to coordinate and control robots to help humans because using several low-cost robots becomes more robust and efficient than using one expensive, powerful robot to execute tasks to achieve the overall goal of a mission. One research area, multi-robot task allocation (MRTA), becomes substantial in a multi-robot system. Assigning suitable tasks to suitable robots is crucial in coordination, which may directly influence the result of a mission. In the past few decades, although numerous researchers have addressed various algorithms or approaches to solve MRTA problems in different multi-robot systems, it is still difficult to overcome certain challenges, such as dynamic environments, changeable task information, miscellaneous robot abilities, the dynamic condition of a robot, or uncertainties from sensors or actuators. In this paper, we propose a novel approach to handle MRTA problems with Bayesian Networks (BNs) under these challenging circumstances. Our experiments exhibit that the proposed approach may effectively solve real problems in a search-and-rescue mission in centralized, decentralized, and distributed multi-robot systems with real, low-cost robots in dynamic environments. In the future, we will demonstrate that our approach is trainable and can be utilized in a large-scale, complicated environment. Researchers might be able to apply our approach to other applications to explore its extensibility.

2021 ◽  
Vol 3 (1) ◽  
pp. 69-98
Author(s):  
Paul Gautier ◽  
Johann Laurent

Multi-robot task allocation (MRTA) problems require that robots make complex choices based on their understanding of a dynamic and uncertain environment. As a distributed computing system, the Multi-Robot System (MRS) must handle and distribute processing tasks (MRpTA). Each robot must contribute to the overall efficiency of the system based solely on a limited knowledge of its environment. Market-based methods are a natural candidate to deal processing tasks over a MRS but recent and numerous developments in reinforcement learning and especially Deep Q-Networks (DQN) provide new opportunities to solve the problem. In this paper we propose a new DQN-based method so that robots can learn directly from experience, and compare it with Market-based approaches as well with centralized and purely local solutions. Our study shows the relevancy of learning-based methods and also highlight research challenges to solve the processing load-balancing problem in MRS.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6536
Author(s):  
Vivian Cremer Kalempa ◽  
Luis Piardi ◽  
Marcelo Limeira ◽  
André Schneider de Oliveira

This paper presents a novel approach for Multi-Robot Task Allocation (MRTA) that introduces priority policies on preemptive task scheduling and considers dependencies between tasks, and tolerates faults. The approach is referred to as Multi-Robot Preemptive Task Scheduling with Fault Recovery (MRPF). It considers the interaction between running processes and their tasks for management at each new event, prioritizing the more relevant tasks without idleness and latency. The benefit of this approach is the optimization of production in smart factories, where autonomous robots are being employed to improve efficiency and increase flexibility. The evaluation of MRPF is performed through experimentation in small-scale warehouse logistics, referred to as Augmented Reality to Enhanced Experimentation in Smart Warehouses (ARENA). An analysis of priority scheduling, task preemption, and fault recovery is presented to show the benefits of the proposed approach.


2021 ◽  
Vol 10 (2) ◽  
pp. 1092-1104
Author(s):  
Farouq Zitouni ◽  
Ramdane Maamri ◽  
Saad Harous

Nowadays, the multi-robot task allocation problem is one of the most challenging problems in multi-robot systems. It concerns the optimal assignment of a set of tasks to several robots while optimizing a given criterion subject to some constraints. This problem is very complex, particularly when handling large groups of robots and tasks. We propose a formal analysis of the task allocation problem in a multi-robot system, based on set theory concepts. We believe that this analysis will help researchers understand the nature of the problem, its time complexity, and consequently develop efficient solutions. Also, we used that formal analysis to formulate two well-known taxonomies of multi-robot task allocation problems. Finally, a generic solving scheme of multi-robot task allocation problems is proposed and illustrated on assigning papers to reviewers within a journal.


2014 ◽  
Vol 530-531 ◽  
pp. 1053-1057
Author(s):  
Ping Li ◽  
Jun Yan Zhu

In response to characters of multi-robot systems in RoboCup soccer game and dependence between decisions of robots, multi-robot systems task allocation was analyzed by means of game theory in this paper. Formalized description based on game theory for multi-robot system task allocation was offered, and a game theory based task allocation algorithm for multi-robot systems (GT-MRTA) was proposed. Experiments show that GT-MRTA has low complexity, and less time-consumption, can obtain comparative schemes with centralized method, and shows good robustness to communication failure and robot failure.


2009 ◽  
Vol 08 (02) ◽  
pp. 163-176 ◽  
Author(s):  
B. B. CHOUDHURY ◽  
B. B. BISWAL

One of the most important aspects in the design of multi-robot systems (MRS) is the allocation of tasks among the robots in a productive and efficient manner. This paper presents an empirical study on task allocation strategies in multirobot environment. In general, optimal solutions are found through an exhaustive search, but because there are n × m ways in which m tasks can be assigned to n robots, an exhaustive search is often not possible with increased number of tasks. Task allocation methodologies for multirobot systems are developed by considering their capability in terms of time and space. The present work adopts a two-phase methodology to allocate tasks optimally amongst the candidate robots. The allocation cost of the robots is determined during the first phase and alternate algorithms are used in the second phase for optimizing the allocation. The work considers systems of practical sizes and the results obtained through this are helpful in recommending appropriate techniques to the users of MRS for increasing producibility and robot utilization. Three different approaches using Linear programming, Hungarian Algorithm and Knapsack Algorithm are presented and their results are analyzed for the suitability of the methods for an allocation problem. Simulation results are presented and compared for the benefit of the users.


2021 ◽  
Vol 11 (7) ◽  
pp. 2895
Author(s):  
Ahmed Elfakharany ◽  
Zool Hilmi Ismail

In this paper, we present a novel deep reinforcement learning (DRL) based method that is used to perform multi-robot task allocation (MRTA) and navigation in an end-to-end fashion. The policy operates in a decentralized manner mapping raw sensor measurements to the robot’s steering commands without the need to construct a map of the environment. We also present a new metric called the Task Allocation Index (TAI), which measures the performance of a method that performs MRTA and navigation from end-to-end in performing MRTA. The policy was trained on a simulated gazebo environment. The centralized learning and decentralized execution paradigm was used for training the policy. The policy was evaluated quantitatively and visually. The simulation results showed the effectiveness of the proposed method deployed on multiple Turtlebot3 robots.


2021 ◽  
Vol 6 (2) ◽  
pp. 1327-1334
Author(s):  
Siddharth Mayya ◽  
Diego S. D'antonio ◽  
David Saldana ◽  
Vijay Kumar

2021 ◽  
Vol 11 (4) ◽  
pp. 1448
Author(s):  
Wenju Mao ◽  
Zhijie Liu ◽  
Heng Liu ◽  
Fuzeng Yang ◽  
Meirong Wang

Multi-robots have shown good application prospects in agricultural production. Studying the synergistic technologies of agricultural multi-robots can not only improve the efficiency of the overall robot system and meet the needs of precision farming but also solve the problems of decreasing effective labor supply and increasing labor costs in agriculture. Therefore, starting from the point of view of an agricultural multiple robot system architectures, this paper reviews the representative research results of five synergistic technologies of agricultural multi-robots in recent years, namely, environment perception, task allocation, path planning, formation control, and communication, and summarizes the technological progress and development characteristics of these five technologies. Finally, because of these development characteristics, it is shown that the trends and research focus for agricultural multi-robots are to optimize the existing technologies and apply them to a variety of agricultural multi-robots, such as building a hybrid architecture of multi-robot systems, SLAM (simultaneous localization and mapping), cooperation learning of robots, hybrid path planning and formation reconstruction. While synergistic technologies of agricultural multi-robots are extremely challenging in production, in combination with previous research results for real agricultural multi-robots and social development demand, we conclude that it is realistic to expect automated multi-robot systems in the future.


Sign in / Sign up

Export Citation Format

Share Document