scholarly journals Alignment-Free Wireless Charging of Smart Garments with Embroidered Coils

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7372
Author(s):  
Chin-Wei Chang ◽  
Patrick Riehl ◽  
Jenshan Lin

Wireless power transfer (WPT) technologies have been adopted by many products. The capability of charging multiple devices and the design flexibility of charging coils make WPT a good solution for charging smart garments. The use of an embroidered receiver (RX) coil makes the smart garment more breathable and comfortable than using a flexible printed circuit board (FPCB). In order to charge smart garments as part of normal daily routines, two types of wireless-charging systems operating at 400 kHz have been designed. The one-to-one hanger system is desired to have a constant charging current despite misalignment so that users do not need to pay much attention when they hang the garment. For the one-to-multiple-drawer system, the power delivery ability must not change with multiple garments. Additionally, the system should be able to charge folded garments in most of the folding scenarios. This paper analyses the two WPT systems for charging smart garments and provides design approaches to meet the abovementioned goals. The wireless-charging hanger is able to charge a smart garment over a coupling variance with only 21% charging current variation. The wireless-charging drawer is able to charge a smart garment with at least 20 mA under most folding scenarios and three garments with stable power delivery ability.

2018 ◽  
Vol 89 (3) ◽  
pp. 347-353 ◽  
Author(s):  
Min Joo Jeong ◽  
Kunho Park ◽  
Jong Jin Baek ◽  
Se Woong Kim ◽  
Youn Tae Kim

This paper presents a wireless charging method based on textiles through harvesting and storing energy from human movement. The proposed method uses resonant coils made of a conductive yarn and a flexible printed circuit board. The conductive yarn consists of polyurethane-coated copper and polyester filaments. The transmission characteristics of the resonant coils, which were worn on the arm of a human body, were evaluated using simulation and measurement tools. It was determined that the change in the resonant frequency of the conductive-yarn resonant coils can be obtained from the coil length, stitch intervals, and fabric thickness using equations. The measured resonant frequencies of the sending and receiving coils were designed to achieve a resonant frequency of 13.56 MHz when the coils are worn. The resonant coils were worn on the arm of a subject, who moved at various speeds, and the transmission efficiency was measured using an alternating current–direct current converter. The measurement results showed a maximum transmission efficiency of 55.1%, even though the resonant coils were worn around the arm and not the leg, and an average transmission efficiency of 52.1% when the subject was moving at a speed of 6 km/h.


Author(s):  
Chao Sun ◽  
Roman Mikhaylov ◽  
Yongqing Fu ◽  
Fangda Wu ◽  
Hanlin Wang ◽  
...  

2015 ◽  
Vol 11 (6) ◽  
pp. 1366-1377 ◽  
Author(s):  
Jinn-Tsong Tsai ◽  
Chorng-Tyan Lin ◽  
Cheng-Chung Chang ◽  
Jyh-Horng Chou

Author(s):  
Thanh Huy Phung ◽  
Jaehyeong Jeong ◽  
Anton Nailevich Gafurov ◽  
Inyoung Kim ◽  
Sung Yong Kim ◽  
...  

2018 ◽  
Vol 193 (3-4) ◽  
pp. 578-584 ◽  
Author(s):  
Xavier de la Broïse ◽  
Alain Le Coguie ◽  
Jean-Luc Sauvageot ◽  
Claude Pigot ◽  
Xavier Coppolani ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1077
Author(s):  
Marcus A. Hintermüller ◽  
Bernhard Jakoby

We present a valveless microfluidic pump utilizing an oscillating membrane made from a flexible printed circuit board. The microfluidic channel is fabricated by a 3D printing process and features diffuser/nozzle structures to obtain a directed flow; the flexible membrane is bonded to the channel. The membrane is actuated via Lorentz forces to accomplish out-of-plane motions and push the fluid through the channel. A permanent magnet provides the static magnetic field required for the actuation. The simple fabrication method can potentially be used for inexpensive mass fabrication for disposable devices.


Sign in / Sign up

Export Citation Format

Share Document