conductive yarn
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 2)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Md. Reazuddin Repon ◽  
Ginta Laureckiene ◽  
Daiva Mikucioniene

This experiment presents a study carried out on the electric charge passing textiles for heat production in compression weft-knitted composite fabrics used for medical purposes. The aim was to flourish compression support of knitted structure with integrated highly sensitive metal (silver) coated polyamide multifilament yarns and to evaluate its heat origination attributes after stretching in different levels as well as changes of the temperature during the time. A flat double needle-bed knitting machine was utilized to fabricate the selected specimens together with elastomeric inlay-yarn incorporated into the structure for compression generation and silver coated polyamide yarn laid as ground yarn in a plated structure for heat generation. Six different variants depending on the metal coated yarn amount used and the fabric structure along with two types of the conductive yarn linear density were fabricated for this research work. Scanning electron microscope (SEM) images were preoccupied to show the morphology of conductive yarn and thermal pictures were captured to study the evenness of the heat over the surface of composite fabrics depending on conductive yarn distribution in the pattern repeat. The temperature profile of fabricated composite fabrics and comparison of the heat generation by specimens after stretching in different levels was studied.


2021 ◽  
Vol 60 (12) ◽  
Author(s):  
Pramod Sankara Pillai ◽  
Shilpi Agarwal ◽  
Bipin Kumar ◽  
Ramasamy Alagirusamy ◽  
Apurba Das ◽  
...  

Textiles ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 504-512
Author(s):  
Marc Martínez-Estrada ◽  
Ignacio Gil ◽  
Raúl Fernández-García

In this paper, a method to develop embroidered textile strain resistive sensors is presented. The method is based on two overlapped zigzag conductive yarn patterns embroidered in an elastic textile. To demonstrate the functionality of the proposed configuration, a textile sensor embroidered with a conductor yarn composed of 99% pure silver-plated nylon yarn 140/17 dtex has been experimentally characterised for an elongation range from 0% to 65%. In order to show the sensor applicability, a second test with the sensor embroidered in a knee-pad has been done to evaluate the flexion knee angle from 180° to 300°. The experimental results show the usefulness of the proposed method to develop fabric strain sensors that can help to manufacture commercial applications on the healthcare sector.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6780
Author(s):  
Md. Reazuddin Repon ◽  
Ginta Laureckiene ◽  
Daiva Mikucioniene

Textile-based heaters have opened new opportunities for next-generation smart heating devices. This experiment presents electrically conductive textiles for heat generation in orthopaedic compression supports. The main goal was to investigate the influence of frequent washing and stretching on heat generation durability of constructed compression knitted structures. The silver coated polyamide yarns were used to knit a half-Milano rib structure containing elastomeric inlay-yarn. Dimensional stability of the knitted fabric and morphological changes of the silver coated electro-conductive yarns were investigated during every wash cycle. The results revealed that temperature becomes stable within two minutes for all investigated fabrics. The heat generation was found to be dependent on the stretching, mostly due to the changing surface area; and it should be considered during the development of heated compression knits. Washing negatively influences the heat-generating capacity on the fabric due to the surface damage caused by the mechanical and chemical interaction during washing. The higher number of silver-coated filaments in the electro-conductive yarn and the knitted structure, protecting the electro-conductive yarn from mechanical abrasion, may ensure higher durability of heating characteristics.


2021 ◽  
pp. 152808372110494
Author(s):  
Yaya Zhang ◽  
Jiyong Hu ◽  
Xiong Yan ◽  
Huating Tu

To reveal the engineering relationship among the electrical properties of embroidered conductive lines, the electrical properties and arrangements of conductive yarns, it is necessary to establish their equivalent resistance model. Embroidered conductive lines in textiles are usually fabricated by single-layer (conductive and nonconductive yarn used as upper and lower yarn) or double-layer embroidery technology (conductive yarns used as upper and lower yarn). Several researchers have proposed the simple resistance model for single-layer embroidered conductive line based on geometric structure of single conductive yarn in fabric. However, the double-layer conductive line has the contact resistance periodically interlaced by the upper and lower conductive yarns, and it made its equivalent circuit different from that of single-layer conductive line. In this work, a geometric model was built to describe the trace of conductive yarn in fabric, and in combination with Wheatstone Bridge theory, was applied to establish the equivalent resistance models of double-layer conductive lines with a certain width, consisted of various courses. First, the equivalent resistance model of double-layer conductive lines consisting of single course was proposed to calculate the contact resistance. Then, to obtain the electrical resistance of double-layer conductive lines with a certain width, the equivalent resistance model was extended from single course to multiple courses ([Formula: see text]). Finally, to validate the proposed equivalent resistance model, double-layer conductive lines with different embroidery parameters (stitch length and stitch spacing) on nonwoven fabric were fabricated and evaluated. The experimental results revealed that the proposed model accurately predicted the resistances of double-layer conductive lines.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3544
Author(s):  
Hyelim Kim ◽  
Hyeongmin Moon ◽  
Daeyoung Lim ◽  
Wonyoung Jeong

This study aimed to manufacture PAN-based conductive yarn using a wet-spinning process. Two types of carbon nanomaterials, multiwall carbon nanotubes (MWCNT) and carbon nanofiber (CNF), were used alone or in a mixture. First, to derive the optimal composite solution condition for the wet spinning process, a composite solution was prepared with carbon nanomaterials of the same total mass weight (%) and three types of mechanical stirring were performed: mechanical stirring, ultra-sonication, and ball milling. A ball milling process was finally selected by analyzing the viscosity. Based on the above results, 8, 16, 24, and 32 wt% carbon nanomaterial/PAN composite solutions were prepared to produce wet spinning-based composite films before preparing a conductive yarn, and their physical and electrical properties were examined. By measuring the viscosity of the composite solution and the surface resistance of the composite film according to the type and content of carbon nanomaterials, a suitable range of viscosity was found from 103 cP to 105 cP, and the electrical percolation threshold was from 16 wt% carbon nanomaterial/PAN, which showed a surface resistance of 106 Ω/sq or less. Wet spinning was possible with a PAN-based composite solution with a high content of carbon nanomaterials. The crystallinity, crystal orientation, tenacity, and thermal properties were improved when CNF was added up to 24 wt%. On the other hand, the properties deteriorated when CNTs were added alone due to aggregation. Mixing CNT and CNF resulted in poorer properties than with CNF alone, but superior properties to CNT alone. In particular, the electrical properties after incorporating 8 wt% CNT/16 wt% CNF into the PAN, 106 Ω/cm was similar to the PAN-based conductive yarn containing 32 wt% CNF. Therefore, this yarn is expected to be applicable to various smart textiles and wearable devices because of its improved physical properties such as strength and conductivity.


Author(s):  
Kuntima Pattanarat ◽  
Nattasamon Petchsang ◽  
Tanakorn Osotchan ◽  
Yong-Hoon Kim ◽  
Rawat Jaisutti

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3988
Author(s):  
Davor Bonefačić ◽  
Juraj Bartolić

Moisture causes detuning and increased losses in textile antennas, and it affects resonant and wideband textile antennas differently. In this work, we studied the effect of moisture on a resonant textile planar inverted-F antenna (PIFA) and a wideband textile monopole antenna. Both antennas were manufactured by embroidering conductive yarn in denim textile. The input reflection coefficient, antenna gain, and gain patterns were measured on both antennas for different moisture contents. The results show that wideband antennas are less affected by moisture in comparison with resonant antennas. For communications applications, large moisture content in the textile antenna should be avoided; therefore a flexible, textile-based waterproofing antenna cover was proposed, manufactured, and tested. On the other hand, the effect of antenna detuning by moisture can be used for moisture-sensing application. This concept was demonstrated on the resonant textile PIFA in transmission and reflection setups, showing that the reflection setup gives better results.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1364
Author(s):  
Seulah Lee ◽  
Yuna Choi ◽  
Minchang Sung ◽  
Jihyun Bae ◽  
Youngjin Choi

In recent years, flexible sensors for data gloves have been developed that aim to achieve excellent wearability, but they are associated with difficulties due to the complicated manufacturing and embedding into the glove. This study proposes a knitted glove integrated with strain sensors for pattern recognition of hand postures. The proposed sensing glove is fabricated at all once by a knitting technique without sewing and bonding, which is composed of strain sensors knitted with conductive yarn and a glove body with non-conductive yarn. To verify the performance of the developed glove, electrical resistance variations were measured according to the flexed angle and speed. These data showed different values depending on the speed or angle of movements. We carried out experiments on hand postures pattern recognition for the practicability verification of the knitted sensing glove. For this purpose, 10 able-bodied subjects participated in the recognition experiments on 10 target hand postures. The average classification accuracy of 10 subjects reached 94.17% when their own data were used. The accuracy of up to 97.1% was achieved in the case of grasp posture among 10 target postures. When all mixed data from 10 subjects were utilized for pattern recognition, the average classification expressed by the confusion matrix arrived at 89.5%. Therefore, the comprehensive experimental results demonstrated the effectiveness of the knitted sensing gloves. In addition, it is expected to reduce the cost through a simple manufacturing process of the knitted sensing glove.


Sign in / Sign up

Export Citation Format

Share Document