Superconducting Multilayer High-Density Flexible Printed Circuit Board for Very High Thermal Resistance Interconnections

2018 ◽  
Vol 193 (3-4) ◽  
pp. 578-584 ◽  
Author(s):  
Xavier de la Broïse ◽  
Alain Le Coguie ◽  
Jean-Luc Sauvageot ◽  
Claude Pigot ◽  
Xavier Coppolani ◽  
...  
Author(s):  
Chao Sun ◽  
Roman Mikhaylov ◽  
Yongqing Fu ◽  
Fangda Wu ◽  
Hanlin Wang ◽  
...  

2015 ◽  
Vol 11 (6) ◽  
pp. 1366-1377 ◽  
Author(s):  
Jinn-Tsong Tsai ◽  
Chorng-Tyan Lin ◽  
Cheng-Chung Chang ◽  
Jyh-Horng Chou

2021 ◽  
Vol 26 (5) ◽  
pp. 426-431
Author(s):  
V.A. Sergeev ◽  
◽  
A.M. Khodakov ◽  
M.Yu. Salnikov ◽  
◽  
...  

Thermal methods of quality control of the plated-through hole (PTH) of printed circuit board (PCB) are based on thermal models. However, known thermal models of PTH take no account of heat transfer to PCB material thus not allowing for PTH heat characteristic tying up with adhesion quality. In this work, an axisymmetric thermal model of a single-layer PCB PTH under one-sided heating conditions is considered. It was shown that the ratio of the temperature increments of the upper (heated) and lower end of the PTH in the considered range of heating power does not depend on the power level. A linear thermal equivalent scheme of the PTH has been proposed, which includes the longitudinal thermal resistance of the PTH metallization, de-termined by the parameters and quality of the metallization layer, the thermal resistance, which determines the convection heat exchange between the ends of the PTH with the adjacent PCB surface and the environment, and the thermal resistance of the area of the PCB material adjacent to the PTH, depending on the quality of the metallization adhesion and the PCB dielectric. Thermal equivalent circuit parameters determined by the ratio of the temperature increment of the upper and lower ends of the PTH and their difference can serve as the basis for the development of a nondestructive inspection procedure for PTH quality control by way of its unilateral heating, for example, by a laser beam.


Author(s):  
Thanh Huy Phung ◽  
Jaehyeong Jeong ◽  
Anton Nailevich Gafurov ◽  
Inyoung Kim ◽  
Sung Yong Kim ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1077
Author(s):  
Marcus A. Hintermüller ◽  
Bernhard Jakoby

We present a valveless microfluidic pump utilizing an oscillating membrane made from a flexible printed circuit board. The microfluidic channel is fabricated by a 3D printing process and features diffuser/nozzle structures to obtain a directed flow; the flexible membrane is bonded to the channel. The membrane is actuated via Lorentz forces to accomplish out-of-plane motions and push the fluid through the channel. A permanent magnet provides the static magnetic field required for the actuation. The simple fabrication method can potentially be used for inexpensive mass fabrication for disposable devices.


Sign in / Sign up

Export Citation Format

Share Document