scholarly journals Explore3DM—A Directory and More for 3D Metrology

Standards ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 67-78
Author(s):  
Stephen Kyle

Explore3DM will be an online resource to explore the diverse interests behind three-dimensional measurement and three-dimensional metrology (3DM). The motivation has been the development of large-volume and portable 3D methods and systems for applications in manufacturing, an activity which has been growing for the past 40 years. However, the measurement spectrum in Explore3DM will be wider and include, for example, as-built process plant at the large-object end and X-Ray CT inspection at the small-object end. This wider spectrum will support cross-sector research at University College London (UCL) to transfer 3DM developments from one sector to another. Initially, Explore3DM will have a core directory incorporating systems manufacturers, service suppliers, research groups and disseminators of metrology knowledge. Mechanisms for solving end users’ measurement tasks will add to further growth of 3DM. The resource is intended to be free to use and the directory free to join at a basic level. Premium directory sponsorship by commercial companies is expected to provide revenue to sustain and develop the resource and support 3DM development. With regard to standards, LVM and PCM systems and techniques can be difficult to assess with a standardized approach because of the highly flexible ways they can be applied. However, some standards have been developed and there is scope for more, for example in the terminology used. A dictionary will be a component of Explore3DM’s future knowledge base. By presenting a first version in a centralized resource, standardized terminology will be encouraged.

Author(s):  
Sterling P. Newberry

The beautiful three dimensional representation of small object surfaces by the SEM leads one to search for ways to open up the sample and look inside. Could this be the answer to a better microscopy for gross biological 3-D structure? We know from X-Ray microscope images that Freeze Drying and Critical Point Drying give promise of adequately preserving gross structure. Can we slice such preparations open for SEM inspection? In general these preparations crush more readily than they slice. Russell and Dagihlian got around the problem by “deembedding” a section before imaging. This some what defeats the advantages of direct dry preparation, thus we are reluctant to accept it as the final solution to our problem. Alternatively, consider fig 1 wherein a freeze dried onion root has a window cut in its surface by a micromanipulator during observation in the SEM.


2017 ◽  
Author(s):  
Antonio M. Bird ◽  
◽  
Katherine A. Kelker ◽  
Elizabeth S. Brogden ◽  
Jeff Glazner ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chanho Moon ◽  
Kotaro Yamasaki ◽  
Yoshihiko Nagashima ◽  
Shigeru Inagaki ◽  
Takeshi Ido ◽  
...  

AbstractA tomography system is installed as one of the diagnostics of new age to examine the three-dimensional characteristics of structure and dynamics including fluctuations of a linear magnetized helicon plasma. The system is composed of three sets of tomography components located at different axial positions. Each tomography component can measure the two-dimensional emission profile over the entire cross-section of plasma at different axial positions in a sufficient temporal scale to detect the fluctuations. The four-dimensional measurement including time and space successfully obtains the following three results that have never been found without three-dimensional measurement: (1) in the production phase, the plasma front propagates from the antenna toward the end plate with an ion acoustic velocity. (2) In the steady state, the plasma emission profile is inhomogeneous, and decreases along the axial direction in the presence of the azimuthal asymmetry. Furthermore, (3) in the steady state, the fluctuations should originate from a particular axial position located downward from the helicon antenna.


Sign in / Sign up

Export Citation Format

Share Document