scholarly journals Relationship between Spatio-Temporal Travel Patterns Derived from Smart-Card Data and Local Environmental Characteristics of Seoul, Korea

2018 ◽  
Vol 10 (3) ◽  
pp. 787 ◽  
Author(s):  
◽  
◽  
2017 ◽  
Vol 18 (11) ◽  
pp. 3135-3146 ◽  
Author(s):  
Juanjuan Zhao ◽  
Qiang Qu ◽  
Fan Zhang ◽  
Chengzhong Xu ◽  
Siyuan Liu

Author(s):  
Alexis Viallard ◽  
Martin Trépanier ◽  
Catherine Morency

There is a huge potential for exploiting information centered on individual transit users’ behavior through longitudinal smart card data. This is particularly true for cities like Gatineau, Canada, where the bus system serves passengers with different travel patterns. Understanding the evolution of these patterns marks an important point in improving transit demand forecasting models. Indeed, better models can help transit planners to create optimized networks. This paper proposes a comparison of a traditional and an experimental methodology aiming to identify the evolution of travel structure among transit users. These methodologies are based on the clustering of multi-week travel patterns derived from a large sample of smart card transactions (35.4 million). Representing users’ behavior, these patterns are constructed using the number of trips made by every card on each day of a week. Behavior vectors are defined by seven components (one for each day) and are clustered using a K-means algorithm. The experimental week-to-week method consists in clustering the population on each week, while using the clustering results from the previous week as seed. This latter approach makes it possible to observe the evolution of users’ behaviors and also has a better clustering quality in a similar computation time than the traditional method.


2021 ◽  
Author(s):  
Christian Martin Mützel ◽  
Joachim Scheiner

AbstractModern public transit systems are often run with automated fare collection (AFC) systems in combination with smart cards. These systems passively collect massive amounts of detailed spatio-temporal trip data, thus opening up new possibilities for public transit planning and management as well as providing new insights for urban planners. We use smart card trip data from Taipei, Taiwan, to perform an in-depth analysis of spatio-temporal station-to-station metro trip patterns for a whole week divided into several time slices. Based on simple linear regression and line graphs, days of the week and times of the day with similar temporal passenger flow patterns are identified. We visualize magnitudes of passenger flow based on actual geography. By comparing flows for January to March 2019 and for January to March 2020, we look at changes in metro trips under the impact of the coronavirus pandemic (COVID-19) that caused a state of emergency around the globe in 2020. Our results show that metro usage under the impact of COVID-19 has not declined uniformly, but instead is both spatially and temporally highly heterogeneous.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qi Ouyang ◽  
Yongbo Lv ◽  
Yuan Ren ◽  
Jihui Ma ◽  
Jing Li

Analysis of passenger travel habits is always an important item in traffic field. However, passenger travel patterns can only be watched through a period time, and a lot of people travel by public transportation in big cities like Beijing daily, which leads to large-scale data and difficult operation. Using SPARK platform, this paper proposes a trip reconstruction algorithm and adopts the density-based spatial clustering of application with noise (DBSCAN) algorithm to mine the travel patterns of each Smart Card (SC) user in Beijing. For the phenomenon that passengers swipe cards before arriving to avoid the crowd caused by the people of the same destination, the algorithm based on passenger travel frequent items is adopted to guarantee the accuracy of spatial regular patterns. At last, this paper puts forward a model based on density and node importance to gather bus stations. The transportation connection between areas formed by these bus stations can be seen with the help of SC data. We hope that this research will contribute to further studies.


2019 ◽  
Vol 8 (10) ◽  
pp. 434 ◽  
Author(s):  
Tong Zhang ◽  
Jianlong Wang ◽  
Chenrong Cui ◽  
Yicong Li ◽  
Wei He ◽  
...  

Understanding human movement patterns is of fundamental importance in transportation planning and management. We propose to examine complex public transit travel patterns over a large-scale transit network, which is challenging since it involves thousands of transit passengers and massive data from heterogeneous sources. Additionally, efficient representation and visualization of discovered travel patterns is difficult given a large number of transit trips. To address these challenges, this study leverages advanced machine learning methods to identify time-varying mobility patterns based on smart card data and other urban data. The proposed approach delivers a comprehensive solution to pre-process, analyze, and visualize complex public transit travel patterns. This approach first fuses smart card data with other urban data to reconstruct original transit trips. We use two machine learning methods, including a clustering algorithm to extract transit corridors to represent primary mobility connections between different regions and a graph-embedding algorithm to discover hierarchical mobility community structures. We also devise compact and effective multi-scale visualization forms to represent the discovered travel behavior dynamics. An interactive web-based mapping prototype is developed to integrate advanced machine learning methods with specific visualizations to characterize transit travel behavior patterns and to enable visual exploration of transit mobility patterns at different scales and resolutions over space and time. The proposed approach is evaluated using multi-source big transit data (e.g., smart card data, transit network data, and bus trajectory data) collected in Shenzhen City, China. Evaluation of our prototype demonstrates that the proposed visual analytics approach offers a scalable and effective solution for discovering meaningful travel patterns across large metropolitan areas.


Sign in / Sign up

Export Citation Format

Share Document